DOI QR코드

DOI QR Code

가스계 소화시스템 노즐 수축각이 방출소음에 미치는 영향

Influence of the Nozzle Contraction Angles of Gaseous Extinguishing Systems on Discharge Noise

  • 김요환 (성균관대학교 대학원 기계공학과) ;
  • 유한솔 (성균관대학교 대학원 기계공학과) ;
  • 황인주 (한국건설기술연구원) ;
  • 김윤제 (성균관대학교 기계공학부)
  • Kim, Yo-Hwan (Graduate School of Mechanical Engineering, Sungkyunkwan Univ.) ;
  • Yoo, Han-Sol (Graduate School of Mechanical Engineering, Sungkyunkwan Univ.) ;
  • Hwang, In-Ju (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Youn-Jea (School of Mechanical Engineering, Sungkyunkwan Univ.)
  • 투고 : 2019.06.13
  • 심사 : 2019.07.03
  • 발행 : 2019.08.31

초록

소화설비는 예상치 못한 화재를 진압하는 설비이며, 방호대상과 장소에 따라 부합한 소화약제를 사용해야한다. 이 중 가스계 소화설비는 물에 취약한 전자장비 등을 방호하기 위하여 사용되는데, 이 때문에 화학적 반응이 없는 불활성 기체가 주로 적용된다. 하지만 최근 전자장비들의 고집적화로 인하여 가스계 소화설비로부터 발생하는 소음이 전자장비에 손상을 주는 사례가 대두되고 있다. 이에 본 연구에서는 가스계 소화설비를 개선하고자, 노즐 수축각에 따른 유동소음을 수치적으로 계산 및 분석하였다. ANSYS FLUENT ver. 18.1을 사용하여 수치해석을 수행하였으며, 스월 분포를 고찰하여 유동소음에 대한 원인을 분석하였다. 개선된 모델은 기본 모델 대비 약 6 dB가 감소된 것을 확인하였으며, 이는 가스계 소화시스템 노즐 수축각이 방출소음 저감에 영향력 있는 인자임을 확인하였다.

Fire extinguishing systems are essential equipment in all indoor facilities to address unexpected fire scenarios, and appropriate fire extinguishing agent should be used depending on the place and object to protect. Among these, gaseous fire-extinguishing systems are used to protect electronic equipment. Therefore, inert gases that do not undergo chemical reactions are used mainly in those systems. On the other hand, recently, owing to the high integration of electronic equipment, there are some cases, in which large noise generated from gaseous systems damage the electronic equipment. In this study, numerical analysis of the discharge noise with various nozzle contraction angles was carried out to improve the gas fire extinguishing system. Numerical analysis was carried out using ANSYS FLUENT ver 18.1. The causes of the noise were elucidated using the swirl distribution. The noise level of the modified model was reduced by approximately 6 dB compared to the reference model, which is similar to the result of a previous study, confirming the validity of the method.

키워드

참고문헌

  1. NFSC 107A, "Act on Installation, Maintenance and Safety Management of Fire Fighting Facilities", National Fire Agency (NFA) (2013).
  2. NFPA 2001, "Standard on Clean Agent Fire Extinguishing Systems", List of NFPA Codes & Standard (2001).
  3. United Nations Environment Programme (UNEP), "Montreal Protocol on Substances that Deplete the Ozone Layer and Its Attendant Amendments", Nairobi, Kenya (1987).
  4. N. Saito, Y. Saso, Y. Ogawa, Y. Otsu and H. Kikui, "Fire Extinguishing Effect of Mixed Agents of Halon 1301 and Inert Gases", Fire Safety Science, Vol. 5, pp. 901-910 (1997). https://doi.org/10.3801/IAFSS.FSS.5-901
  5. J. G. Owens, "Physical and Environmental Properties of a Next Generation Extinguishing Agent", NIST Special Publication, R0201323 (2002).
  6. J. D. Kim, J. S. Lim, Y. W. Lee and Y. Y. Lee, "Flame Extinguishing Concentrations of Mixed Gaseous Agents", Transaction of Korean Institute of Fire Science & Engineering, Vol. 15, No. 1, pp. 34-40 (2001).
  7. Siemens, "Potential Problems With Computer Hard Disks When Fire Extinguishing Systems Are Released", A White Paper issued by Siemens (2011).
  8. T. Dutta and R. B. Andrew, "Performance of Hard Disk Drives in High Noise Environments", Noise Control Engineering Journal, Vol. 65, No. 5, pp. 386-395 (2017). https://doi.org/10.3397/1/376555
  9. S. Koushik, D. McCormick, C. Cao and M. Corn, "Acoustic Impact of Fire Suppression Nozzles", The Suppression, Detection, and Signaling Research and Applications Conference (SUPDET 2017) (2017).
  10. A. L. Melissa A. Elder and A. Ahmadzadegan, "Acoustic Nozzle Design for Fire Protection Application", The Suppression, Detection, and Signaling Research and Applications Conference (SUPDET 2017) (2017).
  11. KS D 3562, "Carbon Steel Pipes for Pressure Service", KOSA (1968).
  12. N. Andersson, L. E. Eriksson and L. Davidson, "LargeEddy Simulation of Subsonic Turbulent Jets and Their Radiated Sound", AIAA Journal, Vol. 43, No. 9, pp. 1899-1912 (2005). https://doi.org/10.2514/1.13278
  13. C. Bogey, C. Bailly and D. Juve, "Noise Investigation of a High Subsonic, Moderate Reynolds Number Jet Using a Compressible Large Eddy Simulation", Theoretical and Computational Fluid Dynamics, Vol. 16, No. 4, pp. 273-297 (2003). https://doi.org/10.1007/s00162-002-0079-4
  14. J. F. Williams and D. L. Hawkings "Sound Generation by Turbulence and Surfaces in Arbitrary Motion", Philosophical Transactions of the Royal Society A, Vol. 264, No. 1151, pp. 321-342 (1969). https://doi.org/10.1098/rsta.1969.0031
  15. A. Powell, "Theory of Vortex Sound", The Journal of The Acoustical Society of America, Vol. 36, No. 1, pp. 177-195 (1964). https://doi.org/10.1121/1.1918931