DOI QR코드

DOI QR Code

구획실 내 가연물들의 화재거동에 대한 B-RISK와 FDS 연계 화재 시뮬레이션 예측성능 평가

Evaluation of the Prediction of B-RISK-FDS-Coupled Simulations for Multi-Combustible Fire Behavior in a Compartment

  • 백빛나 (부경대학교 안전공학과 대학원) ;
  • 오창보 (부경대학교 안전공학과)
  • Baek, Bitna (Dept. of Safety Engineering. Pukyong National University) ;
  • Oh, Chang Bo (Dept. of Safety Engineering. Pukyong National University)
  • 투고 : 2019.08.12
  • 심사 : 2019.08.26
  • 발행 : 2019.08.31

초록

구획실 내 가연물들의 화재거동에 대한 B-RISK의 예측성능을 Fire dynamics simulator (FDS)와 연계하여 검토하였다. 먼저 열발생률(Heat release rate, HRR)에 대한 B-RISK의 예측성능을 검토하기 위해 가연물 한 세트의 실험에서 측정된 HRR 값과 디자인 화재곡선을 B-RISK의 입력조건으로 사용하여 가연물 두 세트에 대한 HRR 곡선을 계산하고 실험에서 측정된 가연물 두 세트의 HRR 값과 비교하였다. B-RISK 결과와 실험결과를 비교하여 B-RISK가 화재성장률에 대한 예측은 어렵지만 최대 HRR 값과 총 열발생량에 대해서는 충분히 예측할 수 있음을 확인하였다. 그리고 B-RISK 계산을 통해 예측된 HRR 값을 FDS의 입력조건으로 사용하여 계산된 결과와 실험결과를 비교하여 B-RISK 계산을 통해 예측된 HRR 값의 화재거동에 대해 검토하였다. 실험에서 측정된 온도 및 화학종 농도 결과와 비교하여 화재성장구간에 대해 차이가 있는 것을 확인하였지만 예측된 HRR 값에서 Percentile이 약 70%인 HRR 값을 사용하더라도 충분히 전체적인 화재거동을 예측할 수 있음을 확인하였다.

The prediction performance of B-RISK was evaluated for the fire behaviors of combustibles in a compartment using Fire Dynamics Simulator (FDS). First of all, to predict the heat release rate (HRR) for two combustible sets, the HRR for one combustible set and the design fire curve were used as input values for B-RISK. Comparing results of B-RISK calculations with experimental data for two combustible sets, it was found that B-RISK results predicted insufficiently for fire growth rate of experimental data but there was good agreement for maximum HRR and total HRR with the experimental data. And the B-RISK results were used for input values of FDS to evaluate the fire behaviors of B-RISK results. Comparing results of FDS calculations with experimental data, the simulation results showed that the temperature and concentrations of O2, CO2 in the fire growth phase were different from the experimental data. However, when using the B-RISK result for percentile 70%, the simulation results sufficiently predicted the overall fire behaviors.

키워드

참고문헌

  1. B. Baek, C. B. Oh, C. H. Hwang and H. S. Yun, "Evaluation of the Prediction Performance of FDS Combustion Models for the CO Concentration of Gas Fires in a Compartment", Fire Science and Engineering, Vol. 32, No. 1, pp. 7-15 (2018).
  2. Ministry of Public Safety and Security, "Low of Fire Protection Contractor 2016", www.law.go.kr (2016).
  3. H.-J. Kim and D. G. Lilley, "Heat Release Rates of Burning Items in Fires", 38th Aerospace Sciences Meeting and Exhibit, AIAA 2000-0722, pp. 1-25 (2000).
  4. H. Ingason, "Design Fire Curves for Tunnels", Fire Safety Journal, Vol. 44, No. 2, pp. 259-265 (2009). https://doi.org/10.1016/j.firesaf.2008.06.009
  5. B. Baek, C. B. Oh, E. J. Lee and D.-G. Nam, "Application Study of Design Fire Curves for Liquid Pool Fires in a Compartment", Fire Science and Engineering, Vol. 31, No. 4, pp. 43-51 (2017). https://doi.org/10.7731/KIFSE.2017.31.4.043
  6. B. Baek, C. B. Oh and C. Y. Lee, "Evaluation of Modified Design Fire Curves for Liquid Pool Fires Using the FDS and CFAST", Fire Science and Engineering, Vol. 32, No. 2, pp. 7-16 (2018).
  7. B. Baek, C. B. Oh and C. H. Hwang, "Evaluation of Design Fire Curves for Gas Fires in a Compartment Using CFAST", Fire Science and Engineering, Vol. 32, No. 4, pp. 7-16 (2018). https://doi.org/10.7731/KIFSE.2018.32.4.007
  8. B. Baek and C. B. Oh, "Evaluation of the Prediction Performance of Design Fire Curves for Solid Fuel Fire in a Building Space", Fire Science and Engineering, Vol. 33, No. 2, pp. 47-55 (2019). https://doi.org/10.7731/KIFSE.2019.33.2.047
  9. C. Wade, G. Baker, K. Frank, R. Harrison and M. Spearpoint, "B-RISK 2016 user Guide and Technical Manual", BRANZ Study Report SR364 (2016).
  10. G. Baker, C. Wade, M. Spearpoint, C. M. Fleischmann, K. Frank and S. Sazegara, "A Comparison of a Priori Modelling Predictions with Experimental Results to Validate a design Fire Generator Submodel", 13th International Fire and Materials Conference, pp. 28-30 (2013).
  11. M. Zahirasri and M. Spearpoint, "The Capability of B-RISK Zone Modelling Software to Simulate BRE Multiple Vehicle Fire Spread Test", Asian Simulation Conference Springer, pp. 38-51 (2017).
  12. E. Zalok, "Design Fires for Commercial Premises", Ph.D Dissertation, Carleton University (2006).
  13. T. J. Shields, G. W. Silcock and J. J. Murray, "Evaluating Ignition Data Using the Flux Time Product", Fire and Materials, Vol. 18, No. 4, pp. 243-254 (1994). https://doi.org/10.1002/fam.810180407
  14. G. W. H. Silcock and T. J. Shields, "A Protocol for Analysis of Time to Ignition Data From Bench Scale Tests", Fire Safety Journal, Vol. 24, No. 1, pp. 75-95 (1995). https://doi.org/10.1016/0379-7112(95)00003-C
  15. G. Baker, M. Spearpoint, C. M. Fleischmann and C. Wade, "Selecting an Ignition Criterion Methodology for use in a Radiative Fire Spread Submodel", Fire and Materials, Vol. 35, No. 6, pp. 367-381 (2011). https://doi.org/10.1002/fam.1059
  16. S. Nazare, B. Kandola and A. R. Horrocks, "Use of Cone Calorimetry to Quantify the Burning Hazard of Apparel Fabrics", Fire and Materials, Vol. 26, pp. 191-199 (2002). https://doi.org/10.1002/fam.796
  17. NFPA, "The SFPE Handbook of Fire Protection Engineering", NFPA, 2th Edition (1995).
  18. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamics Simulator User's Guide", NIST Special Publication 1019, 6th Edition (2015).