DOI QR코드

DOI QR Code

Eddy Dissipation Concept 연소모델을 적용한 백드래프트 대와동모사 연구

Large Eddy Simulation of Backdraft Using the Eddy Dissipation Concept Combustion Model

  • 하수임 (부경대학교 안전공학과 대학원) ;
  • 오창보 (부경대학교 안전공학과)
  • Ha, Suim (Dept. of Safety Engineering. Pukyong National University) ;
  • Oh, Chang Bo (Dept. of Safety Engineering. Pukyong National University)
  • 투고 : 2019.10.10
  • 심사 : 2019.10.16
  • 발행 : 2019.10.31

초록

본 연구에서는 Eddy Dissipation Concept (EDC) 1-step 연소모델을 이용하여 백드래프트에 대한 대와동모사를 성공적으로 수행하였다. 기존 연구와는 달리 EDC 1-step의 유한화학반응에서 활성화에너지를 적절히 조절함으로써 백드래프트에 대한 예측이 가능하였다. EDC 1-step 연소모델을 이용한 예측결과는 Mixing-Controlled Fast Chemistry(MCFC) 연소모델의 예측결과와 비교 검토되었다. 얻어진 결과에서는 백드래프트 발생 시점을 제외하면 EDC 1-step과 MCFC 결과들은 매우 유사한 것을 확인하였고, 실험에서 얻어진 최고 압력값에 대해서도 합리적인 수준에서 예측하는 것은 알 수 있었다. 그러나 EDC 1-step 연소모델도 MCFC와 마찬가지로 백드래프트 전개과정의 첫 번째 압력 피크에 대해서는 예측하지 못하는 한계를 확인할 수 있었다.

A Large Eddy Simulation (LES), adopting the Eddy Dissipation Concept (EDC) 1-step model, was successfully performed for backdraft phenomena. The activation energy of the finite chemistry reaction in the EDC 1-step model was adjusted to simulate the backdraft. The prediction of the EDC 1-step model was similar to that of the Mixing-Controlled Fast Chemistry (MCFC) model, except when the backdraft occurred. The EDC 1-step model could be used to simulate the experimental peak pressure, but not the first peak pressure of the backdraft.

키워드

참고문헌

  1. C. M. Fleischmann, "Backdraft Phenomena", Ph.D. Thesis, University of California, Berkley (1993).
  2. C. M. Fleischmann, P. J. Pagni and R. B. Williamson, "Quantitative Backdraft Experiments", Fire Safety Science-Proceedings of the Fourth International Symposium, pp. 337-348 (1994).
  3. W. G. Weng and W. C. Fan, "Critical Condition of Backdraft in Compartment Fires: a Reduced-scale Experimental Study", Journal of Loss Prevention in the Process Industries, Vol. 16, pp. 19-26 (2003). https://doi.org/10.1016/S0950-4230(02)00088-8
  4. J.-W. Park, C. B. Oh, B. I. Choi and Y. S. Han, "A Study of Numerical Reproducibility for the Backdraft Phenomena in a Compartment using the FDS", Journal of the Korean Society of Safety, Vol. 28, No. 6, pp. 6-10 (2013). https://doi.org/10.14346/JKOSOS.2013.28.6.006
  5. J.-W. Park, C. B. Oh, B. I. Choi and Y. S. Han, "Computational Visualization of the Backdraft Development Process in a Compartment", Journal of the Visualization, Vol. 18, No. 1, pp. 25-29 (2015). https://doi.org/10.1007/s12650-014-0229-y
  6. D. Myilsamy, C. B. Oh, Y. S. Han and K. H. Do, "A Study of the Suitability of Combustion Chemistry in the EDC Model for the LES of Backdraft", Fire Science and Engineering, Vol. 31, No. 4, pp. 35-45 (2017). https://doi.org/10.7731/KIFSE.2017.31.4.035
  7. J.-W. Park, C. B. Oh, Y. S. Han and K. H. Do, "Effect of Initial Condition and Opening Geometry of a Compartment on the Gravity Current in the Backdraft", Journal of the Korean Society of Safety, Vol. 30, No. 6, pp. 18-25 (2015). https://doi.org/10.14346/JKOSOS.2015.30.6.18
  8. S. Ha and C. B. Oh, "Geometric Effects of Compartment Opening on Fuel-Air Mixing and Backdraft Behavior", Fire Science and Engineering, Vol. 33, No. 1, pp. 30-38 (2019).
  9. M. W. Ko, C. B. Oh, Y. S. Han and K. H. Do, "A Numerical Study of the Backdraft Behavior with the Variation of the Ignition Location and Time", Journal of the Korean Society of Safety, Vol. 31, No. 4, pp. 1-8 (2016). https://doi.org/10.14346/JKOSOS.2016.31.4.1
  10. M. N. Bui-Pham, "Studies in Structures of Laminar Hydrocarbon Flames", Ph.D. Dissertation, University of Caligornia, San Diego (1992).
  11. J.-W. Park, C. B. Oh, Y. S. Han and K. H. Do, "Computational Study of Backdraft Dynamics and the Effects of Initial Conditions in a compartment", Journal of Mechanical Science and Technology, Vol. 31, No. 2, pp. 985-993 (2017). https://doi.org/10.1007/s12206-017-0151-z