DOI QR코드

DOI QR Code

The Effect of Epoxy Resin on the Properties of Encapsulated Fire Extinguishing Agent

캡슐화된 소화약제의 물성에 대한 고분자 매트릭스의 효과

  • Received : 2019.09.08
  • Accepted : 2019.10.17
  • Published : 2019.10.31

Abstract

Fire extinguishing composite materials based on low-viscosity epoxy resin (EP) and containing 50 wt% of encapsulated fire extinguishing agent (EFA) have been studied. The positive effect of the EP on the kinetics and temperature of the EFA decapsulation was established. The EP increases the decapsulation temperature of the EFA from 130 ℃ to 155 ℃ and changes the kinetics of the decapsulation. The epoxy matrix increases the thermal stability of the EFA more than 3.9 times compared to that of the pure EFA. The protective effect of the EP on the storage stability of the EFA was validated. The mass loss of EP-containing EFA at 60 ℃ and 80% humidity over 96 h is 0.4%. The mass loss of pure EFA under the same conditions is 15%. A similar effect was observed under ultraviolet radiation: the EP-containing EFA loses 0.8% at pure EFA mass of 6%. The testing of alternative polymer matrixes has been considered.

저점도 에폭시 수지(EP)를 기본으로하고 캡슐화된 소화약제(EFA)를 50 wt%의 함유한 소화복합재료가 얻어졌다. 탈캡슐화된 EFA의 동역학 및 온도에 대한 EP의 긍정적인 효과가 확립되었다. EP는 EFA의 탈캡슐화 온도를 130 ℃에서 155 ℃로 증가시키고 캡슐화의 역학을 변화시킨다. 에폭시 매트릭스는 순수한 EFA와 비교하여 EFA의 열 안정성을 3.9배 이상 증가시킨다. EFA의 저장 안정성에 대한 EP의 보호 효과가 발견되었다. 60 ℃ 및 80% 습도에서 96시간 동안 EFA를 함유하는 EP의 질량 손실은 0.4%이고, 동일한 조건에서 순수한 EFA의 질량 손실은 15%이다. 자외선의 영향 아래에서 EP의 동일한 효과: 순수한 EFA가 6%인 경우 EFA를 함유한 EP는 0.8% 손실된다. 대안의 중합체 매트릭스의 시험이 고려되었다.

Keywords

References

  1. A. Bahadori, "Safety and Firefighting Equipment, Part 1. Personnel Protection and Safety Equipment for the Oil and Gas Industries", pp. 355-431 (2015).
  2. D. Linden Reddy, "Linden's Handbook of Batteries", Forth ed., McGraw Hill (2011).
  3. D. Rosewater and A. Williams, "Analyzing System Safety in Lithium-ion Grid Energy Storage", Journal of Power Sources, Vol. 300, pp. 460-471 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.068
  4. Q. Wang, B. Mao, S. I. Stoliarov and J. Sun, "A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies", Progress in Energy and Combustion Science, Vol. 73, pp. 95-131 (2019). https://doi.org/10.1016/j.pecs.2019.03.002
  5. P. Ribiere, S. Grugeon, M. Morcrette, S. Boyanov, S. Laruellea and G. Marlair, "Investigation on the Fire-induces Hazards of Li-ion Battery Cells by Fire Calorimetry", Energy & Environmental Science, Vol. 5, pp. 5271-5280 (2012). https://doi.org/10.1039/C1EE02218K
  6. J. Warner, "Battery Management System Controls. The Handbook of Lithium-Ion Battery Pack Design", pp. 91-101 (2015).
  7. L. H. Saw, H. M. Poon, H. S. Thiam, Z. Cai, W. T. Chong, N. A. Pambudi and Y. J. King, "Novel Thermal Management System using Mist Cooling for Lithium-ion Battery Packs", Applied Energy, Vol. 223, pp. 146-158 (2018). https://doi.org/10.1016/j.apenergy.2018.04.042
  8. W. Wu, S. Wang, W. Wu, K. Chen, S. .Hong and Y. Lai, "A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management", Energy Conversion and Management, Vol. 182, pp. 262-281 (2019). https://doi.org/10.1016/j.enconman.2018.12.051
  9. A. A. Sertsova, S. I. Marakulin and E. V. Yurtov, "Metal Compound Nanoparticles: Flame Retardants for Polymer Composites", Russian Journal of General Chemistry, Vol. 87, No. 6, pp. 1395-1402 (2017). https://doi.org/10.1134/S1070363217060421
  10. Z. An, L. Jia, X. Li and Y. Ding, "Experimental Investigation on Lithium-ion Battery Thermal Management Based on Flow Boiling in Mini-channel", Applied Thermal Engineering, Vol. 117, pp. 534-543 (2017). https://doi.org/10.1016/j.applthermaleng.2017.02.053
  11. J. L. Pagliaroa and G. T. Linteris, "Hydrocarbon Flame Inhibition by C6F12O (Novec 1230): Unstretched Burning Velocity Measurements and Predictions", Fire Safety Journal, Vol. 87, pp. 10-17 (2017). https://doi.org/10.1016/j.firesaf.2016.11.002
  12. N. Taniguchi, T. J. Wallington, M. D. Hurley, A. G. Guschin, L. T. Molina and M. J. Molina, "Atmospheric Chemistry of C2F5(O)CF(CF3)2: Photolysis and Reaction with Cl Atoms, OH Radicals and Ozone", The Journal of Physical Chemistry A, Vol. 119, pp. 2674-2679 (2003).
  13. D. A .Jackson, C. J. Young, M. D. Hurley, T. J. Wallington and S. A. Mabury, "Atmospheric Degradation of Perfluoro2-methyl-3-pentanone: Photolysis, Hydrolysis and Hydration", Environmental Science & Technology, Vol. 45, pp. 8030-8036 (2011). https://doi.org/10.1021/es104362g
  14. A. D. Vilesov, N. N. Saprykina, R. V. Stepanova, O. M. Suvorova, M. S. Bosenko, M. S. Vilesova and R. P. Stankevichb, "Microencapsulated Fire-extinguishing Fluids and Reactive Fire-extinguishing Composites Formed on Their Basis1", Polymer Science. Series A,. Vol. 54, No. 6, pp. 499-504 (2012). https://doi.org/10.1134/S0965545X12060077
  15. G. X. Wang, W. B. Xu, Q. Hou and S. W. Guo, "Microwave-assisted Synthesis of Poly (urea-formaldehyde)/Lauryl Alcohol Phase Change Energy Storage Microcapsules", Polymer Science - Series B, Vol. 58, pp. 321-328 (2016). https://doi.org/10.1134/S1560090416030167
  16. G. Wang, W. Xu, Q. Hou and S. Guo, "A Simple Sonochemical Method for Fabricating Poly (Methyl Methacrylate)/Stearic Acid Phase Change Energy Storage Nanocapsules", Ultrasonics Sonochemistry, Vol. 27, pp. 403-407 (2015). https://doi.org/10.1016/j.ultsonch.2015.06.007
  17. A. D. Vilesov, O. M. Suvorova, V. E. Yudin, N. N. Saprykina, M. S. Vilesova and R. P. Stankevich, "Novel Microencapsulated Liquid Fire Extinguishers with a Nanomodified Microcapsule Shell", Polymer Science - Series B, Vol. 56, pp. 512-519 (2014). https://doi.org/10.1134/S1560090414040125