DOI QR코드

DOI QR Code

휘발유/에탄올 혼합연료의 자연점화온도 예측

Prediction of Autoignition Temperatures of Gasoline-Ethanol Blended Fuels

  • 김신우 (부경대학교 안전공학과 대학원) ;
  • 이의주 (부경대학교 안전공학과)
  • Kim, Shin-Woo (Dept. of Safety Engineering, Pukyong National Univ.) ;
  • Lee, Eui-Ju (Dept. of Safety Engineering, Pukyong National Univ.)
  • 투고 : 2019.10.11
  • 심사 : 2019.10.17
  • 발행 : 2019.10.31

초록

최근 다양한 생산기술의 발전을 통해 바이오연료의 생산이 크게 증가하였고, 석유와 같은 기존의 화석연료 등과 혼합연료를 만들어 소비를 장려하고 있다. 이와 같은 새로운 연료의 등장은 기존 에너지 시스템으로의 적용에 있어 화재 및 폭발의 위험성을 크게 증가시킬 수 있다. 따라서 본 연구에서는 대표적인 바이오연료의 소비형태인 휘발유/에탄올 혼합연료를 사용하는 연소장에서 화재 및 폭발의 위험성을 예측할 수 있는 기법을 제시하는 것을 목적으로 하고 있다. 이를 위해 휘발유/에탄올 혼합기의 자연점화온도를 대상으로 수치해석하였고, 반응표면법을 이용하여 다양한 변수조건에 대해서 예측에 대한 유효성과 효율성을 판단해 보았다. 당량비, 압력, 에탄올 분율 등에 대한 자연 발화온도 변화특성은 전체적으로 에탄올 함량과 압력에 큰 의존도를 보였으며, 에탄올 함량이 줄어들수록 압력에 대한 영향이 줄어들었다. 또한 계산을 통한 실험값과 반응표면법을 통해 얻은 기대값이 매우 잘 일치함을 알 수 있었다. 따라서 연료의 혼합 등 다양한 조건에서 운전하는 연소장에서 자연점화온도를 매우 적은 데이터로서 정확하게 예측할 수 있음을 확인하였다.

The recent development of biofuel production technology facilitates the widespread use of bioethanol and biodiesel by mixing them with fossil fuels. However, the use of these new blended fuels in combustion could result in severe safety problems, such as fire and explosion. In this study, numerical simulation was performed on the well-stirred reactor (WSR) to simulate the autoignition temperature (AIT) in homogeneous combustion and clarify the effect of ethanol addition on the AIT, the most important property for assessing the potential for fire and explosion. Response surface methodology (RSM) was introduced as a design of experiment (DOE), enabling the AIT to be predicted and optimized systematically with respect to three independent variables: ethanol mole fraction, equivalence ratio, and pressure. The results show that the autoignition temperature primarily depends on the ethanol mole fraction and pressure, while the effects of the equivalence ratio are independent of the AIT. RSM accurately predicted the experimental AIT, indicating that this method can be used to effectively predict the key properties involved in fires and explosions.

키워드

참고문헌

  1. A. Demirbas, "Progress and Recent Trend in Biofuels", Prog. Energy Combust. Sci., Vol. 33, pp. 1-18 (2007). https://doi.org/10.1016/j.pecs.2006.06.001
  2. A. K. Agarwal, "Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines", Prog. Energy Combust. Sci., Vol. 33, pp. 233-271 (2007). https://doi.org/10.1016/j.pecs.2006.08.003
  3. R. C. Costa and J. R. Sodre, "Hydrous Ethanol vs. Gasolineethanol Blend: Engine Performance and Emissions", Fuel, Vol. 89, pp. 287-293 (2010). https://doi.org/10.1016/j.fuel.2009.06.017
  4. E. J. Barrientos, J. E. Anderson, M. Maricq and A. Boehman, "Particulate Matter Indices using Fuel Smoke Point for Vehicle Emissions with Gasoline, Ethanol Blends, and Butanol Blends", Combust. Flame, Vol. 167, pp. 308-319 (2016). https://doi.org/10.1016/j.combustflame.2016.01.034
  5. R. Suarez-Bertoa, A. Zardini, H. Keuken and C. Astorga, "Impact of Ethanol Containing Gasoline Blends on Emissions from a Flex-fuel Vehicle Tested Over the Worldwide Harmonized Light duty Test Cycle (WLTC)", Fuel, Vol. 143, pp. 173-182 (2015). https://doi.org/10.1016/j.fuel.2014.10.076
  6. G. Najafi, B. Ghobadian, T. Yusaf, S. M. S. Ardebili and R. Mamat, "Optimization of Performance and Exhaust Emission Parameters of a SI (Spark Ignition) Engine with Gasoline-ethanol Blended Fuels using Response Surface Methodology", Energy, Vol. 90, pp. 1815-1829 (2015). https://doi.org/10.1016/j.energy.2015.07.004
  7. E. J. Lee, "Numerical Study on Auto-ignition and Combustion Emissions Using Gasoline/Ethanol Surrogates", Fire Science and Engineering, Vol. 30, No. 3, pp. 1-6 (2016). https://doi.org/10.7731/KIFSE.2016.30.3.001
  8. S. W. Kim and E. J. Lee, "Combustion Characteristics of Gasoline/ethanol Mixed Fuels for Vehicle Fire Safety", Journal of the Korean Society of Safety, Vol. 34, No. 1, pp. 27-33 (2019). https://doi.org/10.14346/JKOSOS.2019.34.1.27
  9. G. Box and K. Wilson, "On the Experimental Attainment of Optimum Condition", Journal of Royal Statical Society, Ser. B, Vol. 13, pp. 1-45 (1951).
  10. R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, "Response Surface Methodology: Process and Product Optimization using Designed Experiments", 3rd Edition, ISBN: 978-0-470-17446-3, Wiley (2008).
  11. E. J. Lee, "Assessment of Coal Combustion Safety of DTF using Response Surface Method", Journal of the Korean Society of Safety, Vol. 30, No. 1, pp. 8-13 (2015). https://doi.org/10.14346/JKOSOS.2015.30.1.008
  12. Minitab, Inc., Minitab 17 Statistical Software [Computer software], Retrieved from www.minitab.com (2010).
  13. R. J. Kee, F. M. Rupley, J. A. Miller, "CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics", Sandia Report SAND89-8009B (1991).
  14. A. Frassoldati, A. Cuoci, T. Faravelli and E. Ranzi, "Kinetic Modeling of the Oxidation of Ethanol and Gasoline Surrogate Mixtures", Combustion Science and Technology, Vol. 182, pp. 653-667 (2010). https://doi.org/10.1080/00102200903466368
  15. E. J. Lee and C. B. Oh, "Ignition Suppression in Hydrogen/ Air Mixtures Inhibited by Heptafluoropropane", Journal of Korean Institute of Fire Science & Engineering, Vol. 22, No. 3, pp. 234-238 (2008).
  16. I. Glassman, "Combustion", Third edition, Academic Press (1996).