References
- Zhuang, J., Chen, Y., and Chen, X. A., New Simplified Modeling Method for Model Predictive Control in a Medium-Sized Commercial Building: A Case Study. Build. Environ, Vol. 127, pp. 1-12, 2018. https://doi.org/10.1016/j.buildenv.2017.10.022
- Henze, G. P., Felsmann, C., and Knabe, G., Evaluation of Optimal Control for Active and Passive Building Thermal Storage. International Journal of Thermal Sciences, Vol. 43, pp. 173-183, 2004. https://doi.org/10.1016/j.ijthermalsci.2003.06.001
- Ferreira, P. M., Ruano, A. E., Silva, S., and Conceicao, E. Z. E., Neural Networks Based Predictive Control for Thermal Comfort and Energy Savings in Public Buildings. Energy and Buildings, Vol. 55, pp. 238-251, 2012. https://doi.org/10.1016/j.enbuild.2012.08.002
- Huang, H., Chen, L., and Hu, E., A New Model Predictive Control Scheme for Energy and Cost Savings in Commercial Buildings: An Airport Terminal Building Case Study. Building and Environment, Vol. 89, pp. 203-216. https://doi.org/10.1016/j.buildenv.2015.01.037
- Kusiak, A., Li, M., and Tang, F., Modeling and Optimization of HVAC Energy Consumption. Applied Energy, Vol. 87, No.10, pp. 3092-3102, 2010. https://doi.org/10.1016/j.apenergy.2010.04.008
- Nguyen, T. T., Yoo, H. J., and Kim, H. M., Analyzing the Impacts of System Parameters on MPC-based Frequency Control for a Stand-alone Microgrid. Energies, Vol. 10, No. 4, p. 417, 2017. https://doi.org/10.3390/en10040417
- Afram, A. and Janabi-Sharifi, F., Theory and Applications of HVAC Control Systems-A Review of Model Predictive Control (MPC). Building and Environment, Vol. 72, pp. 343-355. https://doi.org/10.1016/j.buildenv.2013.11.016
- Khanmirza, E., Esmaeilzadeh, A., and Markazi, A. H. D., Predictive Control of a Building Hybrid Heating System for Energy Cost Reduction. Applied Soft Computing, Vol. 46, pp. 407-423, 2016. https://doi.org/10.1016/j.asoc.2016.05.005
- Jeon, B. K., Kim, E. J., Shin, Y., and Lee, K. H., Learning-Based Predictive Building Energy Model Using Weather Forecasts for Optimal Control of Domestic Energy Systems. Sustainability, Vol. 11, No. 1, pp. 1-16, 2018. https://doi.org/10.1089/sus.2018.29124.upfront
- Premalatha, N. and Valan Arasu, A., Prediction of Solar Radiation for Solar Systems by Using ANN Models with Different Back Propagation Algorithms. Journal of Applied Research and Technology, Vol. 14, No. 3, pp. 206-214, 2016. https://doi.org/10.1016/j.jart.2016.05.001
- Black, J. N., The Distribution of Solar Radiation Over the Earth's Surface. Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie B, Vol. 7, No. 2, pp. 165-189, 1956. https://doi.org/10.1007/BF02243320
- Samimi, J., Estimation of Height-dependent Solar Irradiation and Application to the Solar Climate of Iran. Solar Energy, Vol. 52, No. 5, pp. 401-409, 1994. https://doi.org/10.1016/0038-092X(94)90117-K
- Paltridge, G. W. and Proctor, D., Monthly Mean Solar Radiation Statistics for Australia. Solar Energy, Vol. 18, No. 3, pp. 235-243, 1976. https://doi.org/10.1016/0038-092X(76)90022-0
- Daneshyar, M., Solar Radiation Statistics for Iran. Sol. Energy;(United States), Vol. 21, No. 4, 1978.
- Premalatha, N. and Valan Arasu, A., Prediction of Solar Radiation for Solar Systems by Using ANN Models with Different Back Propagation Algorithms. Journal of Applied Research and Technology, Vol. 14, No. 3, pp. 206-214, 2016. https://doi.org/10.1016/j.jart.2016.05.001
- Lago, J., De Ridder, F., and De Schutter, B., Forecasting Spot Electricity Prices: Deep Learning Approaches and Empirical Comparison of Traditional Algorithms, Applied Energy, Vol. 221, pp. 386-405, 2018. https://doi.org/10.1016/j.apenergy.2018.02.069
- Jiang, Y., Computation of Monthly Mean Daily Global Solar Radiation in China Using Artificial Neural Networks and Comparison with Other Empirical Models, Energy, Vol. 34, No. 9, pp. 1276-1283, 2009. https://doi.org/10.1016/j.energy.2009.05.009
- Ahmad, A., Anderson, T. N., and Lie, T. T., Hourly global solar irradiation forecasting for New Zealand, Solar Energy, Vol. 122, pp. 1398-1408, 2015. https://doi.org/10.1016/j.solener.2015.10.055
- Solmaz, O., Kahramanli, H., Kahraman, A., and Ozgoren, M., Prediction of Daily Solar Radiation Using ANNs for Selected Provinces in Turkey. In International Scientific Conference, pp. 450-456, November, 2010.
- Qing, X. and Niu, Y., Hourly day-ahead Solar Irradiance Prediction Using Weather Forecasts by LSTM. Energy, Vol. 148, pp. 461-468, 2018. https://doi.org/10.1016/j.energy.2018.01.177
- http://www.kma.go.kr/, Korea Official Meteorological Agency.
- https://www.metoffice.gov.uk/, UK Official Meteorological Agency.
- https://www.weather.gov/, United States Official Meteorological Agency.
- https://weather.gc.ca/, Canadian Official Meteorological Agency.
- http://www.kses.re.kr/, The Korean Solar Energy Society.
- Lee, L. J., A Study on Fundamental and Application of CNN and RNN. Broadcasting and Media Magazine, Vol. 22, No. 1, pp. 87-95, 2017.
- Saito, G., Deep Learning from Scratch, Hanbit Media Inc, 2017.
- Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and Baskurt, A., Sequential Deep Learning for Human Action Recognition. In International Workshop on Human Behavior Understanding, Springer, Berlin, Heidelberg, pp. 29-39, November, 2011.
- Kinga, D. and Adam, J. B., A Method for Stochastic Optimization. In International Conference on Learning Representations(ICLR), Vol. 5, 2015.
- Kong, D. S., Kwak, Y. H., and Huh, J. H., Artificial Neural Network Based Energy Demand Prediction for the Urban District Energy Planning. Journal of the Architectural Institute of Korea, Vol. 26, No. 2, pp. 221-230, 2010.
- Documentation, M., The MathWorks Inc, 2005.
- Gutierrez-Corea, F. V., Manso-Callejo, M. A., Moreno-Regidor, M. P., and Manrique-Sancho, M. T., "Forecasting Short-term Solar Irradiance Based on Artificial Neural Networks and Data from Neighboring Meteorological Stations." Solar Energy, Vol. 134, pp. 119-131, 2016. https://doi.org/10.1016/j.solener.2016.04.020
- Kim, T. H., Yoo, S. Y., Han, K. H., Kang, H. C., and Yoon, H. I., A Study on Solar Radiation Model for Prediction of Solar Insolation. The Korean Society of Mechanical Engineers, pp. 670-675, 2013.
Cited by
- Anomaly Detection in Reservoir Water Level Data Using the LSTM Model Based on Deep Learning vol.21, pp.1, 2019, https://doi.org/10.9798/kosham.2021.21.1.71