DOI QR코드

DOI QR Code

탄소분말이 함유된 마이크로 그리드패턴 전기용량형 압력센서

Carbon Black Containing Micro-Grid Patterned Piezocapacitive Pressure Sensor

  • 투고 : 2019.10.21
  • 심사 : 2019.10.31
  • 발행 : 2019.10.31

초록

이 연구에서는 마이크로 그리드 패턴 표면을 갖는 탄소 분말이 첨가된 Poly-dimethylsiloxane (PDMS)를 사용하여 전기용량형 압력센서(Piezocapacitive Sensor)를 제작하였다. 탄소 분말과 그리드 패턴이 센서의 성능에 미치는 효과를 알아보기 위해 탄소 분말의 농도와 그리드 패턴의 밀도를 달리하여 여러 개의 센서를 제작하였다. 센서의 작동 범위와 민감도를 척도로 센서의 성능을 비교하였다.

In this research, a capacitive pressure sensor (Piezocapacitive Sensor) was fabricated using carbon black powder containing poly-dimethylsiloxane (PDMS) with micro-grid patterned surface. To investigate the effect of carbon black powder and micro-grid pattern on the sensor's performance, various sensors were fabricated with different carbon black powder concentration and grid pattern density. The performances of the developed sensors were compared in terms of operating range and sensitivity.

키워드

참고문헌

  1. Trung, T.Q., and Lee, N.E., "Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-activity Monitoringand Personal Healthcare," Advanced Materials, Vol. 28, 2016, pp. 4338-4372. https://doi.org/10.1002/adma.201504244
  2. Kwon, D.U., Lee, T.I., Shim, J.M., Ryu, S.H., Kim, M.S., Kim, S.H., Kim, T.S., and Park, I.K., "Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer," ACS Applied Materials & Interfaces, Vol. 8, 2016, pp. 16922-16931. https://doi.org/10.1021/acsami.6b04225
  3. Boutry, C.M., Nguyen, A., Lawal, Q.O., Chortos, A., Rondeau-Gagne, S., and Bao, Z.N., "A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring," Advanced Materials, Vol. 27, Iss. 43, 2015, pp. 6954-6961. https://doi.org/10.1002/adma.201502535
  4. Pang, C.H., Koo, J.H., Nguyen, A., Caves, J.M., Kim, M.G., Chortos, A., Kim, K.P., Wang, P.J., Tok, J.B.H., and Bao, Z., "Highly Skin-Conformal Microhairy Sensor for Pulse Signal Amplification," Advanced Materials, Vol. 27, Iss. 4, 2015, pp. 634-640. https://doi.org/10.1002/adma.201403807
  5. Lipomi, D.J., Vosgueritchian, M., Tee, B.C., Hellstrom, S.L., Lee, J.A., Fox, C.H., and Bao, Z., "Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes," Nature Nanotechnology, Vol. 6, 2011, pp. 788-792. https://doi.org/10.1038/nnano.2011.184
  6. Cho, S.H., Lee, S.W., Yu, S., Kim, H., Chang, S., Kang, D., Hwang, I., Kang, H.S., Jeong, B., Kim, E.H., Cho, S.M., Kim, K.L., Lee, H., Shim, W., and Park, C., "Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures With High Sensitivity," ACS Applied Materials & Interfaces, Vol. 9, 2017, pp. 10128-10135. https://doi.org/10.1021/acsami.7b00398
  7. Yang, J.C., Kim, J.O., Oh, J.W., Kwon, S.Y., Sim, J.Y., Kim, D.W., Choi, H.B., and Park, S., "Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature," ACS Applied Materials & Interfaces, Vol. 11, 2019, pp. 19472-19480. https://doi.org/10.1021/acsami.9b03261
  8. Oh, J.W., Kim, J.O., Kim, Y.J., Choi, H.B., Yang, J.C., Lee, S.R., Pyatykh, M., Kim, J., Sim, J.Y., and Park, S., "Highly Uniform and Low Hysteresis Piezoresistive Pressure Sensors Based on Chemical Grafting of Polypyrrole on Elastomer Template with Uniform Pore Size," Small, Vol. 15, Iss. 33, 2019, pp. 1901744. https://doi.org/10.1002/smll.201901744
  9. Tee, B.C.K., Chortos, A., Dunn, R.R., Schwartz, G., Eason, and E., Bao, Z., "Tunable Flexible Pressure Sensors Using Microstructured Elastomer Geometries for Intuitive Electronics," Advanced Functional Materials, Vol. 24, Iss. 34, 2014, pp. 5427-5434. https://doi.org/10.1002/adfm.201400712
  10. Bae, J.H., and Chang, S.H., "PVDF-based Ferroelectric Polymers and Dielectric Elastomers for Sensor and Actuator Applications: A Review," Functional Composites and Structures, Vol. 1, 2019, pp. 012003. https://doi.org/10.1088/2631-6331/ab0f48
  11. Bigg, D.M., "Mechanical Properties of Particulate Filled Polymers," Polymer Composites, Vol. 8, Iss. 2, 1987, pp. 115-122. https://doi.org/10.1002/pc.750080208
  12. Suo, Z., "Theory of Dielectric Elastomers," Acta Mechanica Solida Sinica, Vol. 23, Iss. 6, 2010, pp. 549-578. https://doi.org/10.1016/S0894-9166(11)60004-9
  13. Oh, J., Yang, J.C., Kim, J.O., Park, H., Kwon, S.Y., Lee, S., Sim, J.Y., Oh, H.W., Kim, J., and Park, S., "Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications," ACS Nano, Vol. 12, 2018, pp. 7546-7553. https://doi.org/10.1021/acsnano.8b03488
  14. Rwei, S.P., Ku, F.H., and Cheng, K.C., "Dispersion of Carbon Black in a Continuous Phase: Electrical, Rheological, and Morphological Studies," Colloid and Polymer Science, Vol. 280, Iss. 12, 2002, pp. 1110-1115. https://doi.org/10.1007/s00396-002-0718-8
  15. Rossiter, J., Yap, B., and Conn, A., "Biomimetic Chromatophores for Camouflage and Soft Active Surfaces," Bioinspiration & Biomimetics, Vol. 7, 2012, pp. 036009. https://doi.org/10.1088/1748-3182/7/3/036009
  16. Bae, J.H., and Chang, S.H., "Characterization of an Electroactive Polymer (PVDF-TrFE) Film-Type Sensor for Health Monitoring of Composite Structures," Composite Structures, Vol. 131, 2015, pp. 1090-1098. https://doi.org/10.1016/j.compstruct.2015.06.075
  17. Lee, H.Y., Jung, K.C., Han, M.G., and Chang, S.H., "A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness," Composites Research, Vol. 27, Iss. 6, 2014, pp. 242-247. https://doi.org/10.7234/composres.2014.27.6.242