Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Alehossein, H. and Korinets, A. (2000), "Mesh-independent finite difference analysis using gradient-dependent plasticity", Commun. Numer. Meth. Eng., 16(5), 363-375. https://doi.org/10.1002/(SICI)1099-0887(200005)16:5%3C363::AID-CNM344%3E3.0.CO;2-W.
- Alehossein, H. and Poulsen, B.A. (2010), "Stress analysis of longwall top coal caving", Int. J. Rock Mech. Min. Sci., 47(1), 30-41. https://doi.org/10.1016/j.ijrmms.2009.07.004.
- Alejano, L.R., Ramirez-Oyanguren, P. and Taboada, J. (1999), "FDM predictive methodology for subsidence due to flat and inclined coal seam mining", Int. J. Rock Mech. Min. Sci., 36(4), 475-491. https://doi.org/10.1016/S0148-9062(99)00022-4.
- Basarir, H., Oge, I.F. and Aydin, O. (2015), "Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis", Int. J. Rock Mech. Min. Sci., 76, 88-97. https://doi.org/10.1016/j.ijrmms.2015.03.001.
- BP (2018), "BP Statistical review of world energy", British Petroleum, London, U.K.
- Cheng, Z.B., Li, L.H. and Zhang, Y.N. (2019), "Laboratory investigation of the mechanical properties of coal-rock combined body", Bull. Eng. Geol. Environ. https://doi.org/10.1007/s10064-019-01613-z.
- Cheng, Z.B., Zhang, Y.N., Li, L.H. and Lv, H.Y. (2018), "Theoretical solution and analysis of the elastic modulus and foundation coefficient of coal-rock combination material", Int. J. Mater. Sci. Res., 1(1), 23-31. https://doi.org/10.18689/ijmsr-1000104
- Guo, J., Feng, G., Wang, P., Qi, T., Zhang, X. and Yan, Y. (2018), "Roof strata behaviour and support resistance determination for ultra-thick longwall top coal caving panel: A case study of the Tashan coal mine", Energies, 11(5), 1041. https://doi.org/10.3390/en11051041.
- Hock, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
- Jirankova, E. (2012), "Utilisation of surface subsidence measurements in assessing failures of rigid strata overlying extracted coal seams", Int. J. Rock Mech. Min. Sci., 53, 111-119. https://doi.org/10.1016/j.ijrmms.2012.05.007.
- Kirzhner, F. and Rozenbaum, M. (2001), "Behavior of the working fluid in mechanized support in permafrost", J. Cold Reg. Eng., 15(3), 170-185. https://doi.org/10.1061/(ASCE)0887-381X(2001)15:3(170).
- Kong, D., Cheng, Z. and Zheng, S. (2019), "Study on failure mechanism and stability control measures in large-cuttingheight coal mining face with deep-buried seam", Bull. Eng. Geol. Environ., 1-15. https://doi.org/10.1007/s10064-019-01523-0.
- Lei, C., Yang, J.H., Song, G.F. and Zhang, K. (2016), "Calculation of weighting interval and real-time working resistance based on beam elastic foundation method", Electron. J. Geotech. Eng., 21(5), 1931-1942.
- Liu, F., Guo, Z., Lv, H. and Cheng, Z. (2018), "Test and analysis of blast wave in mortar test block", Int. J. Rock Mech. Min. Sci., 108, 80-85. https://doi.org/10.1016/j.ijrmms.2018.06.003.
- Liu, X.J. and Cheng, Z.B. (2019), "Changes in subsidence-field surface movement in shallow-seam coal mining", J. S. Afr. Inst. Min. Metall., 119, 201-206. https://doi.org/10.17159/2411-9717/2019/v119n2a12.
- Lv, H., Tang, Y., Zhang, L., Cheng, Z. and Zhang, Y. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.
- Marschalko, M., Bednarik, M., Yilmaz, I., Bouchal, T. and Kubecka, K. (2011), "Evaluation of subsidence due to underground coal mining: an example from the Czech Republic", Bull. Eng. Geol. Environ., 71, 105-111. https://doi.org/10.1007/s10064-011-0401-8.
- Masri, M., Sibai, M., Shao, J.F. and Mainguy M. (2014), "Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale", Int. J. Rock Mech. Min. Sci., 70(9), 185-191. https://doi.org/10.1016/j.ijrmms.2014.05.007.
- Sasaoka, T., Takamoto, H., Shimada, H., Oya, J., Hamanaka, A. and Matsui, K. (2015), "Surface subsidence due to underground mining operation under weak geological condition in Indonesia", J. Rock Mech. Geotech. Eng., 7(3), 337-344. https://doi.org/10.1016/j.jrmge.2015.01.007.
- Suchowerska, A.M., Carter, J.P. and Hambleton, J.P. (2015), "Geomechanics of subsidence above single and multi-seam coal mining", J. Rock Mech. Geotech. Eng., 8(3), 304-313. https://doi.org/10.1016/j.jrmge.2015.11.007.
- Vakili, A., and Hebblewhite, B.K. (2010), "A new cavability assessment criterion for longwall top coal caving", Int. J. Rock Mech. Min. Sci., 47(8), 1317-1329. https://doi.org/10.1016/j.ijrmms.2010.08.010.
- Wang, J., Yang, S., Li, Y. and Wang, Z. (2015), "A dynamic method to determine the supports capacity in longwall coal mining", Int. J. Min. Reclam. Environ., 29(4), 277-288. https://doi.org/10.1080/17480930.2014.891694.
- Wang, J., Yang, S., Li, Y., Wei, L., and Liu, H. (2014), "Caving mechanisms of loose top-coal in longwall top-coal caving mining method", Int. J. Rock Mech. Min. Sci., 71, 160-170. https://doi.org/10.1016/j.ijrmms.2014.04.024.
- Xie, G.X., Chang, J.C. and Yang, K. (2009), "Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face", Int. J. Rock Mech. Min. Sci., 46(1), 172-181. https://doi.org/10.1016/j.ijrmms.2008.09.006.
- Xie, Y.S. and Zhao, Y.S. (2009), "Numerical simulation of the top coal caving process using the discrete element method", Int. J. Rock Mech. Min. Sci., 46(6), 983-991. https://doi.org/10.1016/j.ijrmms.2009.03.005.
- Yang, T., Liu, J., Finklea, H., Lee, S., Epting, W.K., Mahbub, R., Hsu, T., Salvador, P.A., Abernathy, H.W. and Hackett, G.A. (2018), "An efficient approach for prediction of Warburg-type resistance under working currents", Int. J. Hydrogen Energy, 43(32), 15445-15456. https://doi.org/10.1016/j.ijhydene.2018.06.076.
- Yasitli, N.E. and Unver, B. (2005), "3D numerical modeling of longwall mining with top-coal caving", Int. J. Rock Mech. Min. Sci., 42(2), 219-235. https://doi.org/10.1016/j.ijrmms.2004.08.007.
- Zhang, Y., Cheng, Z. and Lv, H. (2019). "Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions", Geomech. Eng., 18(1), 97-109. https://doi.org/10.12989/gae.2019.18.1.97.
Cited by
- Multifactor Evaluation of Multiple Service Support and Optimization of Working Resistance of New Support Based on Dynamic Pressure vol.2020, 2019, https://doi.org/10.1155/2020/8858635
- Evaluation of the face advance rate on ground control in the open face area associated with mining operations in Western China vol.17, pp.2, 2020, https://doi.org/10.1093/jge/gxz124
- Laboratory investigation of the mechanical properties of coal-rock combined body vol.79, pp.4, 2019, https://doi.org/10.1007/s10064-019-01613-z
- Estimation of tunnel support pattern selection using artificial neural network vol.13, pp.9, 2019, https://doi.org/10.1007/s12517-020-05311-z
- Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2019, https://doi.org/10.12989/sem.2021.79.2.237
- The Comprehensive Identification of Roof Risk in a Fully Mechanized Working Face Using the Cloud Model vol.9, pp.17, 2021, https://doi.org/10.3390/math9172072