References
- Brown, D.R. and Warner, J. (1973), "Compaction grouting", J. Soil Mech. Found. Div., 99(8), 589-601. https://doi.org/10.1061/JSFEAQ.0001911
- Carter, J.P., Booker, J.R. and Yeung, S.K. (1986), "Cavity expansion in cohesive frictional soils", Geotechnique, 36(3), 349-358. https://doi.org/10.1680/geot.1986.36.3.349
- Carter, J.P., Randolph, M.F and Wroth, C.P. (2010), "Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity", Int. J. Numer. Anal. Meth. Geomech., 3(4), 305-322. https://doi.org/10.1002/nag.1610030402.
- Chai, J.C., Hossain, M.J., Carter, J. and Shen, S.L. (2014), "Cone penetration-induced pore pressure distribution and dissipation", Comput. Geotech., 57(4), 105-113. https://doi.org/10.1016/j.compgeo.2014.01.008.
- Chen, G.H., Zou, J.F. and Qian, Z.H. (2019a), "An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils", Geomech. Eng., 17(1), 97-107. https://doi.org/10.12989/gae.2019.17.1.097.
- Chen, G.H., Zou, J.F., Min, Q., Guo, W.J. and Zhang, T.Z. (2019b), "Face stability analysis of a shallow square tunnel in non-homogeneous soils", Comput. Geotech., 114, 103112. https://doi.org/10.1016/j.compgeo.2019.103112.
- Chen, G.H., Zou, J.F. and Chen, J.Q. (2019c), "Shallow tunnel face stability considering pore water pressure in nonhomogeneous and anisotropic soils", Comput. Geotech., 116, 103205. https://doi.org/10.1016/j.compgeo.2019.103205.
- Chen, R.P., Tang, L.J., Yin, X.S., Chen, Y.M. and Bian, X.C. (2015), "An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils", Acta Geotech., 10(5), 683-692. https://doi.org/10.1007/s11440-014-0304-5.
- D'Antonio, R.G., Lay, G., Wan, J., Su, N., Cruz, O. and Shao, L. (2014), "Admiralty way ground improvement case study", Proceedings of the Geo-Congress 2014, Atlanta, Georgia, U.S.A., February.
- El-Kelesh, A.M., Mossaad, M.E. and Basha, I.M. (2001), "Model of compaction grouting", J. Geotech. Geoenviron. Eng., 127(11), 955-964. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(955).
- El-Kelesh, A.M., Matsui, T. and Tokida, K.I. (2012), "Field investigation into effectiveness of compaction grouting", J. Geotech. Geoenviron. Eng., 138(4), 451-460. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000540.
- Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. http://dx.doi.org/10.12989/gae.2015.8.3.323.
- Fischer, J.A., Mcwhorter, J.G. and Fischer, J.J. (2012), "Geological and geotechnical aspects of grouting in karst", Proceedings of the 4th International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, U.S.A., February.
- Graf, E.D. (1969), "Compaction grouting technique and observations", J. Soil Mech. Found. Div., 95(5), 1151-1158. https://doi.org/10.1061/JSFEAQ.0001321
- Hossain, M.A. and Yin, J.H. (2014), "Behavior of a pressuregrouted soil-cement interface in direct shear tests", Int. J. Geomech., 14(1), 101-109. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000301.
- Ibrahim, E., Soubra, A.H. and Mollon, G. (2015), "Threedimensional face stability analysis of pressurized tunnels driven in a multilayered purely frictional medium", Tunn. Undergr. Sp. Technol., 49(01),18-34. https://doi.org/10.1016/j.tust.2015.04.001.
- Li, C., Zou, J.F. and A, S.G. (2019), "Closed-form solution for undrained cavity expansion in anisotropic soil mass based on spatially mobilized plane failure criterion", Int. J. Geomech., 19(7), 04019075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001458.
- Pan, Q. and Dias, D. (2017), "Upper-bound analysis on the face stability of a non-circular tunnel", Tunn. Undergr. Sp. Technol., 62, 96-102. https://doi.org/10.1016/j.tust.2016.11.010.
- Pan, Q. and Dias, D. (2018), "Three dimensional face stability of a tunnel in weak rock masses subjected to seepage forces", Tunn. Undergr. Sp. Technol., 71, 555-566. https://doi.org/10.1016/j.tust.2017.11.003
- Pegues, J.C., Jordan, J.A. and Xu, Y. (2015), "Ground improvement: Difficulties in measuring success", Proceedings of the International Foundations Congress and Equipment Expo 2015, San Antonio, Texas, U.S.A., March.
- Szynakiewicz, T. (2016), "Compaction grouting for ground improvement and structure rehabilitation", Proceedings of the Biennial Rocky Mountain Geo-Conference, Golden, Colorado, U.S.A., November.
- Taylor, R.M. and Choquet, P. (2014), "Automatic monitoring of grouting performance parameters", Proceedings of the International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, U.S.A., February.
- Ukritchon, B., Yingchaloenkitkhajorn, K. and Keawsawasvong, S. (2017), "Three-dimensional undrained tunnel face stability in clay with a linearly increasing shear strength with depth", Comput. Geotech., 88, 146-151. https://doi.org/10.1016/j.compgeo.2017.03.013.
- Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found. Div., 98(3), 265-269. https://doi.org/10.1061/JSFEAQ.0001740
- Wong, H.Y. (1971), Compaction of Soil during Pressure Grouting, Private Rep., Cementation Research Ltd., Rickmansworth, Herts, England.
- Wong, H.Y. (1974), "Discussion of compaction grouting", J. Geotech. Eng. Div., 100(5), 556-559. https://doi.org/10.1061/AJGEB6.0000049
- Warner, J. and Brown, D.R. (1973), "Planning and performing compaction grouting", J. Geotech. Eng. Div., 100(6), 653-666. https://doi.org/10.1061/AJGEB6.0000058
- Wang, S.L., Yin, S.D. and Wu, Z.J. (2012), "Strain-softening analysis of a spherical cavity", Int. J. Numer. Anal. Meth. Geomech., 36(2), 182-202. https://doi.org/10.1002/nag.1002.
- Wang, S.Y., Chan, D.H., Lam, K.C. and Au, S.K.A. (2010), "Effect of lateral earth pressure coefficient on pressure controlled compaction grouting in triaxial condition", Soils Found., 50(3), 441-445. https://doi.org/10.3208/sandf.50.441.
- Wang, S.Y., Chan, D.H., Lam, K.C. and Au, S.K.A. (2013), "A new laboratory apparatus for studying dynamic compaction grouting into granular soils", Soils Found., 53(3), 462-468. https://doi.org/10.1016/j.sandf.2013.04.007.
- Xiao, Y., Liu, H., Chen, Y., Jiang, J. and Zhang, W. (2015), "State-dependent constitutive model for rockfill materials", Int. J. Geomech., 15(5), 04014075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000421.
- Xiao, Y. and Liu, H. (2017), "Elastoplastic constitutive model for rockfill materials considering particle breakage", Int. J. Geomech., 17(1), 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
- Yang, X.L. and Pan, Q.J. (2015), "Three dimensional seismic and static stability of rock slopes", Geomech. Eng., 8(1), 97-111. http://dx.doi.org/10.12989/gae.2015.8.1.097.
- Yang, X.L. and Yan, R.M. (2015), "Collapse mechanism for deep tunnel subjected to seepage force in layered soils", Geomech. Eng., 8(5), 741-756. https://doi.org/10.12989/gae.2015.8.5.741.
- Yea, G.G., Kim, T.H., Kim, J.H. and Kim, H.Y. (2013), "Rehabilitation of the core zone of an earth-fill dam", J. Perform. Construct. Facil., 27(4), 485-495. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000335.
- Zhang, C., Han, K. and Zhang, D. (2015), "Face stability analysis of shallow circular tunnels in cohesive-frictional soils", Tunn. Undergr. Sp. Technol., 50, 345-357. https://doi.org/10.1016/j.tust.2015.08.007.
- Zhou, H., Kong, G., Li, P. and Liu, H. (2015), "Flat cavity expansion: theoretical model and application to the interpretation of the flat dilatometer test", J. Eng. Mech., 212(1), 1-7. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000957.
- Zhou, H., Kong, G. and Liu, H. (2016), "A semi-analytical solution for cylindrical cavity expansion in elastic-perfectly plastic soil under biaxial in situ stress field", Geotechnique, 66(7), 1-12. http://dx.doi.org/10.1680/jgeot.15.P.115.
- Zou, J.F. and Xia, M.Y. (2016), "Uplift capacity of shallow anchors based on the generalized nonlinear failure criterion", Math. Prob. Eng., 1-9. http://dx.doi.org/10.1155/2016/3082047.
- Zou, J.F., Xia, Z.Q. and Dan, H.C. (2016), "Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rockbolt", Geomech. Eng., 11(3), 439-455. https://doi.org/10.12989/gae.2016.11.3.439.
- Zou, J.F. and Xia, M.Y. (2017), "A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress", Geomech. Eng., 12(3), 347-360. https://doi.org/10.12989/gae.2017.12.3.347.
- Zou, J.F. and Wei, X.X. (2018), "An improved radius-incrementalapproach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling", Geomech. Eng., 16(1), 59-69. https://doi.org/10.12989/gae.2018.16.1.059.
- Zou, J.F., Wei, A. and Yang, T. (2018), "Elasto-plastic solution for shallow tunnel in semi-infinite space", Appl. Math. Modell., 64(12), 669-687. https://doi.org/10.1016/j.apm.2018.07.049.
- Zou, J. F., Yang, T., Ling, W., Guo, W. and Huang, F. (2019a), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. https://doi.org/10.12989/gae.2019.18.3.225.
- Zou, J.F., Chen, G.H. and Qian, Z.H. (2019b), "Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models", Comput. Geotech., 106(2), 1-17. https://doi.org/10.1016/j.compgeo.2018.10.014.
- Zou, J.F., Liu, S.X., Li, J.B. and Qian, Z.H. (2019c), "Face stability analysis for a shield-driven tunnel with non-linear yield criterion", Proc. Inst. Civ. Eng. Geotech. Eng., 172(3), 243-254. https://doi.org/10.1680/jgeen.17.00222.
- Zou, J.F. and Zhang, P.H. (2019), "Analytical model of fully grouted bolts in pull-out tests and in situ rock masses", Int. J. Rock Mech. Min. Sci., 113(1), 278-294. https://doi.org/10.1016/j.ijrmms.2018.11.015.