DOI QR코드

DOI QR Code

Ageing assessment of zirconia implant prostheses by three different quantitative assessment techniques

  • Received : 2019.04.21
  • Accepted : 2019.10.29
  • Published : 2019.10.31

Abstract

PURPOSE. To evaluate the influence of cyclic loading on phase transformation of zirconia abutments and to compare the effectiveness of three different quantitative ageing assessment techniques. MATERIALS AND METHODS. Thirty two Y-TZP prostheses fabricated from two brands, InCoris ZI and Ceramill ZI, were cemented to titanium bases and equally divided into two subgroups (n=8): control group without any treatment and aged group with cyclic loading between 20 N and 98 N for 100,000 cycles at 4 Hz in distilled water at $37^{\circ}C$. The tetragonal-to-monoclinic phase transformation was assessed by (i) conventional x-ray diffraction (XRD), (ii) micro x-ray diffraction (${\mu}XRD$), and (iii) micro-Raman spectroscopy. The monoclinic-phase fractions (M%) were compared by two-way ANOVA. RESULTS. InCoris Zi presented significantly higher M% than Ceramill Zi in both control and aged groups (P<.001). Both materials exhibited significant phase transformation with monoclinicphase of 1 to 3% more in aged groups than controls for all three assessment techniques. The comparable M% was quantified by both ${\mu}XRD$ and XRD. The highest M% was assessed with micro-Raman. CONCLUSION. Cyclic loading produced significant phase transformation in tested Y-TZP prostheses. The micro-Raman spectroscopy could be used as an alternative to XRD and ${\mu}XRD$.

Keywords

References

  1. Andersson B, Odman P, Lindvall AM, Lithner B. Single-tooth restorations supported by osseointegrated implants: results and experiences from a prospective study after 2 to 3 years. Int J Oral Maxillofac Implants 1995;10:702-11.
  2. Kimura H, Horng CJ, Okazaki M, Takahashi J. Oxidation effects on porcelain-titanium interface reactions and bond strength. Dent Mater J 1990;9:91-9. https://doi.org/10.4012/dmj.9.91
  3. Gomes AL, Montero J. Zirconia implant abutments: a review. Med Oral Patol Oral Cir Bucal 2011;16:e50-5. https://doi.org/10.4317/medoral.16.e50
  4. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  5. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008;24:289-98. https://doi.org/10.1016/j.dental.2007.05.005
  6. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J Am Ceram Soc 2009;92:1901-20. https://doi.org/10.1111/j.1551-2916.2009.03278.x
  7. Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. J American Ceram Soc 1999;82:2150-4. https://doi.org/10.1111/j.1151-2916.1999.tb02055.x
  8. Hummer CD 3rd, Rothman RH, Hozack WJ. Catastrophic failure of modular zirconia-ceramic femoral head components after total hip arthroplasty. J Arthroplasty 1995;10:848-50. https://doi.org/10.1016/S0883-5403(05)80085-3
  9. #2 FPSNS. Hip implant recall because of potential fracture problems. http://www.fda.gov/downloads/Safety/FDAPatient SafetyNews/UCM417762.pdf; 2002.
  10. Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent 2012;108: 223-30. https://doi.org/10.1016/S0022-3913(12)60166-8
  11. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hubsch C. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater 2012;8:1213-20. https://doi.org/10.1016/j.actbio.2011.11.016
  12. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011;7:858-65. https://doi.org/10.1016/j.actbio.2010.09.020
  13. Kim HT, Han JS, Yang JH, Lee JB, Kim SH. The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics. J Adv Prosthodont 2009;1:113-7. https://doi.org/10.4047/jap.2009.1.3.113
  14. Flinn BD, Raigrodski AJ, Singh A, Mancl LA. Effect of hydrothermal degradation on three types of zirconias for dental application. J Prosthet Dent 2014;112:1377-84. https://doi.org/10.1016/j.prosdent.2014.07.015
  15. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  16. Zembic A, Philipp AO, Hammerle CH, Wohlwend A, Sailer I. Eleven-year follow-up of a prospective study of zirconia implant abutments supporting single all-ceramic crowns in anterior and premolar regions. Clin Implant Dent Relat Res 2015;17:e417-26. https://doi.org/10.1111/cid.12263
  17. ISO 14801. Dentistry - Implants - Dynamic fatigue test for endosseous dental implants. 2nd ed. International Standards Organization (ISO); Geneva; Switzerland, 2007. https://www.iso.org/standard/41034.html
  18. Munoz-Tabares AMa, Anglada MJ. Quantitative analysis of monoclinic phase in 3Y-TZP by raman spectroscopy. J Am Ceram Soc 2010;93:1790-5.
  19. Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrO2-based dental ceramic. Dent Mater 2014;30:e396-404. https://doi.org/10.1016/j.dental.2014.08.380
  20. Basilio Mde A, Cardoso KV, Antonio SG, Rizkalla AS, Santos Junior GC, Arioli Filho JN. Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments. J Prosthet Dent 2016;116:277-85. https://doi.org/10.1016/j.prosdent.2016.01.011
  21. Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LV. Factors affecting the mechanical behavior of Y-TZP. J Mech Behav Biomed Mater 2014;37:78-87. https://doi.org/10.1016/j.jmbbm.2014.05.013
  22. Lange FF, Dunlop GL, Davis BI. Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at $250^{\circ}C$. J Am Ceram Soc 1986;69:237-40. https://doi.org/10.1111/j.1151-2916.1986.tb07415.x
  23. Schmauder S, Schubert H. Significance of internal stresses for the martensitic transformation in Yttria-stabilized tetragonal zirconia polycrystals during degradation. J Am Ceram Soc 1986;69:534-40. https://doi.org/10.1111/j.1151-2916.1986.tb04789.x
  24. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17:269-74. https://doi.org/10.1007/s00784-012-0692-6
  25. Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. J Biomed Mater Res B Appl Biomater 2005;72:239-45.
  26. He BB, Preckwinkel U. X-ray optics for two-dimensional diffraction. Adv in X-ray Anal 2002;45:332-7.
  27. He BB. Introduction to two-dimensional X-ray diffraction. Powder Diffraction 2003;18:71-85. https://doi.org/10.1154/1.1577355
  28. He BB. Microdiffraction using two-dimensional detectors. Powder Diffraction 2004;19:110-8. https://doi.org/10.1154/1.1752948
  29. Wulfman C, Sadoun M, Chapelle ML. Interest of raman spectroscopy for the study of dental material: The zirconia material example. IRBM 2010;31:257-62. https://doi.org/10.1016/j.irbm.2010.10.004
  30. Clarke DR, Adar F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J Am Ceram Soc 1982;65:284-8. https://doi.org/10.1111/j.1151-2916.1982.tb10445.x
  31. Kim B, Hahn J, Han K. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. J Mater Sci Lett 1997;16:669-71. https://doi.org/10.1023/A:1018587821260
  32. Munoz-Tabares J, Jimenez-Pique E, Anglada M. Subsurface evaluation of hydrothermal degradation of zirconia. Acta Materialia 2011;59:473-84. https://doi.org/10.1016/j.actamat.2010.09.047
  33. Siarampi E, Kontonasaki E, Andrikopoulos KS, Kantiranis N, Voyiatzis GA, Zorba T, Paraskevopoulos KM, Koidis P. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations. Dent Mater 2014;30:e306-16. https://doi.org/10.1016/j.dental.2014.05.033
  34. Fillit R, Homerin P, Schafer J, Brugas H, Thevenot F. Quantitative XRD analysis of zirconia-toughened alumina ceramics. J Mater Sci 1987;22:3566-70. https://doi.org/10.1007/BF01161460
  35. Wulfman C, Djaker N, Dupont N, Ruse D, Sadoun M, Chapelle ML. Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia. J Am Ceram Soc 2012;95:2347-51. https://doi.org/10.1111/j.1551-2916.2012.05237.x
  36. Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A, Van 'T Hof MA, Witter DJ, Kalk W, Jansen JA. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res 2000;79:1519-24. https://doi.org/10.1177/00220345000790071501