DOI QR코드

DOI QR Code

A Study on Strength and Durability Characteristics of Cemented Weathered Mudstone

풍화 이암 고결토의 강도 및 내구성 특성에 관한 연구

  • Kim, Seong-Heon (Dept. of Civil Eng., Kyungpook National Univ.) ;
  • Moon, Hong-Duk (Dept. of Civil Eng., Gyeongnam National Univ. of Science and Technology) ;
  • Park, Sung-Sik (Dept. of Civil Eng., Kyungpook National Univ.)
  • 김성헌 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 문홍득 (경남과학기술대학교 건설환경공과대학 토목공학과) ;
  • 박성식 (경북대학교 공과대학 토목공학과)
  • Received : 2019.07.23
  • Accepted : 2019.10.07
  • Published : 2019.10.31

Abstract

In this study, in order to recycle a large amount of rocks and weathered mudstones produced by civil engineering projects such as railways and highways, as materials for roadbeds or embankment materials, circumferential specimens with a diameter of 5 cm and a height of 10 cm were made. A mudstone that weathered rapidly during rainfall was collected from Pohang construction sites. The weathered mudstone passed through a 2 mm sieve. It was prepared with the cement ratio, the sand ratio, curing condition and curing days. Three specimens were prepared according to each condition and then the unconfined compressive test, durability test and SEM analysis were performed to evaluate the engineering properties of the cemented soil. In the case of 28 days cured specimen, the strength of under-water cured specimens was 32-55% and the durability index was about 15% higher than air cured specimens. In addition, when the CR increased from 8% to 16%, the unconfined compressive strength (UCS) of pure mudstone cemented soil under water increased by about 1.6 times and the durability index increased by about 1.9 times. When the SR increased from 0% to 50%, the UCS of the specimen with SR = 10% was slightly less than or equal to specimen with SR = 0%. Then, as the SR became 30-50%, the UCS increased up to 51%. Unlike the UCS, the durability index increased continuously as the SR increased. As a result of SEM analysis, when SR was 50% rather than SR = 0%, the contact between sand particles increased and they were connected to each other. Such contact between these particles resulted in the increase of strength.

본 연구에서는 국내 철도 및 고속도로 등 각종 토목사업이 진행되면서 발생하는 많은 양의 파쇄암 특히 풍화 이암을 도로 노상이나 성토 재료로 활용하기 위해 직경 5cm, 높이 10cm의 원주형 공시체를 제작하여 공학적 특성을 평가하였다. 포항지역 토목현장에서 강우 시 빠르게 풍화되는 이암을 채취한 다음 2mm체를 통과한 파쇄 이암에 시멘트비, 모래비, 양생조건, 양생기간에 따른 풍화 이암 고결토를 제작하였다. 각 조건에 따라 공시체를 3개씩 제작한 다음 일축압축강도, 내구성시험 및 SEM 분석을 실시하였으며, 양생조건, 시멘트비 및 모래비가 고결토의 공학적 특성에 미치는 영향을 연구하였다. 28일 양생한 경우, 대기중보다 수중 양생한 공시체의 일축압축강도가 32-55% 정도, 그리고 내구성지수는 평균 15% 정도 더 높았다. 또한, 시멘트비가 8%에서 16%로 증가할 경우, 수중 양생한 순수 이암 고결토의 일축압축강도는 약 1.6배 정도 증가하였으며, 내구성지수는 약 1.9배 증가하였다. 모래비가 0%에서 50%로 증가할 경우, 순수 이암 고결토보다 모래비가 10%인 경우 일축압축강도가 약간 감소하거나 변화 없다가 30-50% 정도 함유됨에 따라 최대 51%까지 증가하는 경향을 보였다. 한편, 내구성지수는 일축압축강도와 달리 모래비가 증가함에 따라 계속 증가하는 경향을 보였다. SEM 분석 결과 모래비가 0%인 경우보다 50%인 경우 모래 입자간의 연결이 증가하면서 서로 연결된 구조를 보였으며, 이러한 입자간 연결로 고결토의 강도가 증가하였다.

Keywords

References

  1. ASTM D 2166-06 (2003), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil.
  2. ASTM D 4644 (2004), Standard Test Method for Slake Durability of Shales and Similar Weak Rocks.
  3. Joel, M. and Agbede, I.O. (2010), "Mechanial-Cement Stabilization of Laterite for Use as Flexible Pavement Material", Journal of Materials in Civil Engineering, Vol.23, No.2, pp.146-152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000148
  4. Kim, K.S., Kim, K.Y., and Jung, J.H. (2001), "Creep Characteristic of Mudstone in the Tertiary at Pohang Basin", Proc. of the Journal of Engineering Geology.
  5. Kim, K.Y., Park, H.G., and Jeon, J.S. (2005), "Strength Characteristics of Cemented Sand and Gravel", Journal of the Korean Geotechnical Society, Vol.21, No.10, pp.61-71.
  6. KS F 2303 (2015), Test method for liquid limit and plastic limit of soils.
  7. KS F 2308 (2016), Test method for specific gravity of soils.
  8. Lee, S.R., Kim, Y.S., Kim, N.J., and Ahn, K.H. (2008), "Analysis of Relationships Between Topography/Geology and Groundwater Yield Properties at Pohang using GIS", Journal of Economic and Environmental Geology, Vol.41, No.1, pp.115-131.
  9. Nweke, O.M. and Okogbue, C.O. (2017), "The Potential of Cement Stabilized Shale Quarry Dust for Possible Use as Road Foundation Material", International Journal of Geo-Engineering, Vol.8, No.1(29). https://doi.org/10.1186/s40703-017-0043-1
  10. Park, S.S. (2011), "A Study on Strength Characteristics of Sandgravel Mixtures", Journal of the Korean Geo-Environmental Society, Vol.12, No.5, pp.13-19.
  11. Park, S.S. and Hwang, S.H. (2012), "A Study on Durability Test of Cemented Soils", Journal of the Korean geotechnical society, Vol.28, No.11, pp.79-86. https://doi.org/10.7843/kgs.2012.28.11.79
  12. Park, S.S. and Hwang, S.H. (2014), "Relationship between Unconfined Compressive Strength and Shear Wave Velocity of Cemented Sands", Journal of the Korean Geotechnical Society, Vol.30, No.1, pp.65-74. https://doi.org/10.7843/kgs.2014.30.1.65
  13. Park, S.S., Kim, K.Y., Choi, H.S., and Kim, C.W. (2009), "Effect of Different Curing Methods on the Unconfined Compressive Strength of Cemented Sand", Journal of the Korean Society of Civil Engineers, Vol.29, No.5C, pp.207-215.
  14. Park, S.S., Kim, S.H., and Bae, D.H. (2018), "Strength Characteristics of Sedimentary Rock in Daegu-Gyungbuk Area Followed by Saturation and Crack Initiation", Journal of the Korean geotechnical society, Vol.34, No.12, pp.29-42. https://doi.org/10.7843/KGS.2018.34.12.29
  15. Road construction standard specification (2015), Korea Expressway Corporation.
  16. Schwartz, G.M. (1939), Foundation conditions at the sites of the proposed St. Anthony Falls locks Minneaplis, Minnesota. Rep. to the U.S Army Corps of Engineers, St. Paul District.
  17. Xiao, H.W. and Lee F.H. (2008), "Curing Time Effect on Behavior of Cement Treated Marine Clay", International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, Vol.2, No.7, pp.144-151.