DOI QR코드

DOI QR Code

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Kim, Kyoung-Hwa (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Park, Shin-Young (Program of Clinical Dental Education and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Yoon, Sung-Young (Plasma Technology Research Center, National Fusion Research Institute) ;
  • Kim, Gon-Ho (Department of Energy Systems (Nuclear) Engineering, Seoul National University School of Engineering) ;
  • Lee, Yong-Moo (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Rhyu, In-Chul (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Seol, Yang-Jo (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry)
  • Received : 2019.06.24
  • Accepted : 2019.08.28
  • Published : 2019.10.30

Abstract

Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

Keywords

References

  1. Mombelli A. Microbiology and antimicrobial therapy of peri-implantitis. Periodontol 2000 2002;28:177-89. https://doi.org/10.1034/j.1600-0757.2002.280107.x
  2. Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig 2005;9:111-7. https://doi.org/10.1007/s00784-005-0305-8
  3. Persson LG, Mouhyi J, Berglundh T, Sennerby L, Lindhe J. Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog. Clin Implant Dent Relat Res 2004;6:230-8. https://doi.org/10.1111/j.1708-8208.2004.tb00039.x
  4. Schwarz F, Nuesry E, Bieling K, Herten M, Becker J. Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol 2006;77:1820-7. https://doi.org/10.1902/jop.2006.050456
  5. Schou S, Holmstrup P, Jorgensen T, Skovgaard LT, Stoltze K, Hjorting-Hansen E, et al. Implant surface preparation in the surgical treatment of experimental peri-implantitis with autogenous bone graft and ePTFE membrane in cynomolgus monkeys. Clin Oral Implants Res 2003;14:412-22. https://doi.org/10.1034/j.1600-0501.2003.00912.x
  6. Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater 2009;88:83-91.
  7. Kreisler M, Kohnen W, Christoffers AB, Gotz H, Jansen B, Duschner H, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er : YAG laser and an air powder system. Clin Oral Implants Res 2005;16:36-43. https://doi.org/10.1111/j.1600-0501.2004.01056.x
  8. Mendis DA, Rosenberg M, Azam F. A note on the possible electrostatic disruption of bacteria. IEEE Trans Plasma Sci 2000;28:1304-6. https://doi.org/10.1109/27.893321
  9. Laroussi M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci 2002;30:1409-15. https://doi.org/10.1109/TPS.2002.804220
  10. Kim JH, Lee MA, Han GJ, Cho BH. Plasma in dentistry: a review of basic concepts and applications in dentistry. Acta Odontol Scand 2014;72:1-12. https://doi.org/10.3109/00016357.2013.795660
  11. Lackmann JW, Bandow JE. Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 2014;98:6205-13. https://doi.org/10.1007/s00253-014-5781-9
  12. Jablonowski L, Koban I, Berg MH, Kindel E, Duske K, Schroder K, et al. Elimination of E. Faecalis by a new non-thermal atmospheric pressure plasma handheld device for endodontic treatment. A preliminary investigation. Plasma Process Polym 2013;10:499-505. https://doi.org/10.1002/ppap.201200156
  13. Yang B, Chen J, Yu Q, Li H, Lin M, Mustapha A, et al. Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush. J Dent 2011;39:48-56. https://doi.org/10.1016/j.jdent.2010.10.002
  14. Cho BH, Han GJ, Oh KH, Chung SN, Chun BH. The effect of plasma polymer coating using atmospheric-pressure glow discharge on the shear bond strength of composite resin to ceramic. J Mater Sci 2010;46:2755-63. https://doi.org/10.1007/s10853-010-5149-1
  15. Nam SH, Lee HJ, Hong JW, Kim GC. Efficacy of nonthermal atmospheric pressure plasma for tooth bleaching. Sci World J 2015;2015:581731.
  16. Canullo L, Penarrocha D, Clementini M, Iannello G, Micarelli C. Impact of plasma of argon cleaning treatment on implant abutments in patients with a history of periodontal disease and thin biotype: radiographic results at 24-month follow-up of a RCT. Clin Oral Implants Res 2015;26:8-14.
  17. Koban I, Holtfreter B, Hubner NO, Matthes R, Sietmann R, Kindel E, et al. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J Clin Periodontol 2011;38:956-65. https://doi.org/10.1111/j.1600-051X.2011.01740.x
  18. Carreiro AF, Delben JA, Guedes S, Silveira EJ, Janal MN, Vergani CE, et al. Low-temperature plasma on peri-implant-related biofilm and gingival tissue. J Periodontol 2019;90:507-15. https://doi.org/10.1002/JPER.18-0366
  19. Yoon SY, Kim KH, Seol YJ, Kim SJ, Bae B, Huh SR, et al. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria. J Korean Phys Soc 2016;68:1176-91. https://doi.org/10.3938/jkps.68.1176
  20. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP, Lindhe J. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clin Oral Implants Res 2007;18:655-61. https://doi.org/10.1111/j.1600-0501.2007.01397.x
  21. Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 2010;44:013002.
  22. Laroussi M, Mendis DA, Rosenberg M. Plasma interaction with microbes. New J Phys 2003;5:41.1-41.10.
  23. Venezia RA, Orrico M, Houston E, Yin SM, Naumova YY. Lethal activity of nonthermal plasma sterilization against microorganisms. Infect Control Hosp Epidemiol 2008;29:430-6. https://doi.org/10.1086/588003
  24. Laroussi M, Sayler GS, Glascock BB, McCurdy B, Pearce ME, Bright NG, et al. Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure. IEEE Trans Plasma Sci 1999;27:34-5. https://doi.org/10.1109/27.763016
  25. Lee K, Paek KH, Ju WT, Lee Y. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 2006;44:269-75.
  26. Montie TC, Kelly-Wintenberg K, Roth JR. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 2000;28:41-50. https://doi.org/10.1109/27.842860
  27. Kim SJ, Yoon SY, Kim GH. Bullet velocity distribution of a helium atmospheric-pressure plasma jet in various N2/O2 mixed ambient conditions. IEEE Trans Plasma Sci 2015;43:2054-63. https://doi.org/10.1109/TPS.2015.2428721
  28. Miura T, Egawa M, Ito T, Eguro T, Tanabe K, Yoshinari M. Debridement effect on periodontal pathogen Porphyromonas gingivalis cultured on titanium by application of atmospheric-pressure plasma. J Biomed Sci Eng 2017;10:51-9. https://doi.org/10.4236/jbise.2017.102006
  29. Kim MS, Lee JS, Shin HK, Kim JS, Yun JH, Cho KS. Prospective randomized, controlled trial of sinus grafting using Escherichia-coli-produced rhBMP-2 with a biphasic calcium phosphate carrier compared to deproteinized bovine bone. Clin Oral Implants Res 2015;26:1361-8. https://doi.org/10.1111/clr.12471
  30. Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 1998;62:1244-63. https://doi.org/10.1128/MMBR.62.4.1244-1263.1998
  31. Mahasneh A, Darby M, Tolle SL, Hynes W, Laroussi M, Karakas E. Inactivation of Porphyromonas gingivalis by low-temperature atmospheric pressure plasma. Plasma Med 2011;1:191-204. https://doi.org/10.1615/PlasmaMed.2012002854
  32. Marsh PD. Dental plaque as a microbial biofilm. Caries Res 2004;38:204-11. https://doi.org/10.1159/000077756
  33. Preissner S, Wirtz HC, Tietz AK, Abu-Sirhan S, Herbst SR, Hartwig S, et al. Bactericidal efficacy of tissue tolerable plasma on microrough titanium dental implants: An in-vitro-study. J Biophotonics 2016;9:637-44. https://doi.org/10.1002/jbio.201500189
  34. Sladek RE, Filoche SK, Sissons CH, Stoffels E. Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Lett Appl Microbiol 2007;45:318-23. https://doi.org/10.1111/j.1472-765X.2007.02194.x
  35. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 2007;73:3283-90. https://doi.org/10.1128/AEM.02750-06
  36. Shashurin A, Keidar M, Bronnikov S, Jurjus RA, Stepp MA. Living tissue under treatment of cold plasma atmospheric jet. Appl Phys Lett 2008;93:181501. https://doi.org/10.1063/1.3020223
  37. Vleugels M, Shama G, Deng XT, Greenacre E, Brocklehurst T, Kong MG. Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Trans Plasma Sci 2005;33:824-8. https://doi.org/10.1109/TPS.2005.844524
  38. Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, et al. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process Polym 2007;4:370-5. https://doi.org/10.1002/ppap.200600217

Cited by

  1. The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature vol.10, pp.8, 2020, https://doi.org/10.3390/nano10081505
  2. The Antimicrobial Effect of Cold Atmospheric Plasma against Dental Pathogens-A Systematic Review of In-Vitro Studies vol.10, pp.2, 2019, https://doi.org/10.3390/antibiotics10020211
  3. Applications of Cold Atmospheric Pressure Plasma in Dentistry vol.11, pp.5, 2019, https://doi.org/10.3390/app11051975
  4. Safety evaluation of atmospheric pressure plasma jets in in vitro and in vivo experiments vol.51, pp.3, 2021, https://doi.org/10.5051/jpis.2007300365
  5. Cold Atmospheric Plasma Jet as a Possible Adjuvant Therapy for Periodontal Disease vol.26, pp.18, 2019, https://doi.org/10.3390/molecules26185590