DOI QR코드

DOI QR Code

Characterization of Phosphorus Flame Retardant Pre-treatment on Cellulose-Based Hollow Fiber Carbon Membranes

인계난연제 전처리에 따른 셀룰로스계 중공사 탄소막의 특성분석

  • Lee, Su-Oh (Department of Carbon Material Fiber Engineering, Chonbuk National University) ;
  • Chung, Yong-Sik (Department of Carbon Material Fiber Engineering, Chonbuk National University)
  • 이수오 (전북대학교 탄소소재파이버공학과) ;
  • 정용식 (전북대학교 탄소소재파이버공학과)
  • Received : 2019.09.22
  • Accepted : 2019.10.07
  • Published : 2019.10.31

Abstract

This study investigated the effect of phosphorus flame retardant treatment on cellulose-based hollow fiber carbon membranes (HFCMs). The HFCMs were prepared by the pyrolysis of cellulose hollow fiber treated with an $(NH_4)_2HPO_4$ and polysiloxane emulsion mixture. TGA showed that the HFCMs started to decompose at $150^{\circ}C$ and that the carbon yield increased by 9.2% at $850^{\circ}C$. The HFCMs did not show typical cellulose crystalline peaks at $350^{\circ}C$ in XRD analysis. The flexibility of the HFCMs decreased as the final pyrolysis temperature increased. $(NH_4)_2HPO_4$ treatment lowered the degree of flexibility of the HFCMs. The tensile strength and tensile modulus increased with the pyrolysis temperature.

Keywords

References

  1. K. Okamoto, S. Kawamura, M. Yoshino, H. Kita, Y. Hirayama, N. Tanihara, and Y. Kusuki, "Olefin/paraffin Separation Through Carbonized Membranes Derived from an Asymmetric Polyimide Hollow Fiber Membrane", Ind. Eng. Chem. Res., 1999, 38, 4424-4432. https://doi.org/10.1021/ie990209p
  2. M. Kiyono, "Carbon Molecular Sieve Membranes for Natural Gas Separations", Ph.D Thesis, Diss., Georgia Institute of Technology, 2010.
  3. S. M. Saufi and A. F. Ismail, "Development and Characterization of Polyacrylonitrile (PAN) Based Carbon Hollow Fiber Membrane", Songklanakarin J. Sci. Technol., 2002, 24, 843-854.
  4. H. Suda and K. Haraya, "Alkene/alkane Permselectivities of a Carbon Molecular Sievemembrane", Chem. Comm., 1997, 1, 93-94.
  5. W. Zhou, T. Watari, H. Kita, and K. Okamoto, "Gas Permeation Properties of Flexible Pyrolytic Membranes from Sulfonated Polyimides", Chem. Lett., 2002, 31, 534-535. https://doi.org/10.1246/cl.2002.534
  6. M. Yoshimune and K. Haraya , "Flexible Carbon Hollow Fiber Membranes Derived from Sulfonated Poly(phenylene oxide)", Sep. Purif. Technol., 2010, 75, 193-197. https://doi.org/10.1016/j.seppur.2010.07.017
  7. S. Chand, "Review Carbon Fibers for Composites", J. Mater. Sci., 2000, 35, 1303-1313. https://doi.org/10.1023/A:1004780301489
  8. N. Yusof and A. F. Ismail, "Post Spinning and Pyrolysis Processes of Polyacrylonitrile (PAN)-based Carbon Fiber and Activated Carbon Fiber: A Review", J. Anal. Appl. Pyrolysis, 2012, 93, 1-13. https://doi.org/10.1016/j.jaap.2011.10.001
  9. K. Akato, "Pretreatment and Pyrolysis of Rayon-based Precursor for Carbon Fibers", Master's Thesis, University of Tennessee, 2012.
  10. P. Zhu, S. Sui, B. Wang, K. Sun, and G. Sun, "A Study of Pyrolysis and Pyrolysis Products of Flame-retardant Cotton Fabrics by DSC, TGA, and PY-GC-MS", J. Anal. Appl. Pyrolysis, 2004, 71, 645-655. https://doi.org/10.1016/j.jaap.2003.09.005
  11. W. Wu and C. Q. Yang, "Comparison of Different Reactive Organophosphorus Flame Retardant Agents for Cotton: Part I. The Bonding of the Flame Retardant Agents to Cotton", Polym. Degrad. Stabil., 2006, 91, 2541-2548. https://doi.org/10.1016/j.polymdegradstab.2006.05.010
  12. W. Wu and C. Q. Yang, "Comparison of DMDHEU and Melamine-formaldehyde as the Binding Agents for a Hydroxy-functional Organophosphorus Flame Retarding Agent on Cotton", J. Fire Sci., 2004, 22, 125-142. https://doi.org/10.1177/0734904104039695
  13. G. Nallathambi, T. Ramachandran, V. Rajendran, and R. Palanivelu, "Effect of Silica Nanoparticles and BTCA on Physical Properties of Cotton Fabrics", Mater. Res., 2011, 14, 552-559. https://doi.org/10.1590/S1516-14392011005000086
  14. E. Kim, B. C. Bai, Y. P. Jeon, C. W. Lee, Y. S. Lee, S. J. In, and J. S. Im, "Effects of $NaCl/H_3PO_4$ Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties", Appl. Chem. Eng., 2014, 25, 418-424. https://doi.org/10.14478/ace.2014.1064
  15. M. M. Tang and R. Bacon, "Carbonization of Cellulose Fibers-I. Low Temperature Pyrolysis", Carbon, 1964, 2, 211-220. https://doi.org/10.1016/0008-6223(64)90035-1
  16. Y. Sekiguchi, J. S. Frye, and F. Shafizadeh, "Structure and Formation of Cellulosic Chars", J. Appl. Polym. Sci., 1983, 28, 3513-3525. https://doi.org/10.1002/app.1983.070281116
  17. L. Zhang, L. Xu, Y. Zhang, X. Zhou, L. Zhang, A. Yasin, L. Wang, and K. Zhi, "Facile Synthesis of Bio-based Nitrogenand Oxygen-doped Porous Carbon Derived from Cotton for Supercapacitors", RSC Adv., 2018, 8, 3869-3877. https://doi.org/10.1039/C7RA11475C
  18. G. Cheng, P. Varanasi, R. Arora, V. Stavila, B. A. Simmons, M. S. Kent, and S. Singh, "Impact of Ionic Liquid Pretreatment Conditions on Cellulose Crystalline Structure Using 1-ethyl-3-methylimidazolium Acetate", J. Phys. Chem. B, 2012, 116, 10049-10054. https://doi.org/10.1021/jp304538v
  19. A. D. French, “Idealized Powder Diffraction Patterns for Cellulose Polymorphs”, Cellulose, 2014, 21, 885-896. https://doi.org/10.1007/s10570-013-0030-4
  20. I. Karacan and L. Erzurumluoglu, "The Effect of Carbonization Temperature on the Structure and Properties of Carbon Fibers Prepared from Poly(m-phenylene isophthalamide) Precursor", Fiber. Polym., 2015, 16, 1629-1645. https://doi.org/10.1007/s12221-015-5030-6
  21. K. F. Kilulya, T. A. M. Msagati, B. B. Mamba, J. C. Ngila, and T. Bush, “Imidazolium Ionic Liquids as Dissolving Solvents for Chemical-grade Cellulose in the Determination of Fatty Acids Using Gas Chromatography-mass Spectrometry”, BioResources, 2011, 6, 3272-3288.
  22. C. F. Liu, R. C. Sun, A. P. Zhang, and J. L. Ren, "Preparation of Sugarcane Bagasse Cellulosic Phthalate Using an Ionic Liquid as Reaction Medium", Carbohydr. Polym., 2007, 68, 17-25. https://doi.org/10.1016/j.carbpol.2006.07.002
  23. J. Kiefer, K. Obert, J. Fries, A. Bösmann, P. Wasserscheid, and A. Leipertz, "Determination of Glucose and Cellobiose Dissolved in the Ionic Liquid 1-ethyl-3-Methylimidazolium Acetate Using Fourier Transform Infrared Spectroscopy", Applied Spectroscopy, 2009, 63, 1041-1049. https://doi.org/10.1366/000370209789379367