DOI QR코드

DOI QR Code

Preparation of Conductive Fibrous Patterns by Spray Coating, and Studying Their Electrical Properties under Strain

스프레이 코팅 방법을 이용한 전도성 섬유 패턴의 제작과 변형률에 따른 전기적 특성 변화

  • Lee, Da-Eun (Department of Chemical Engineering, Soonchunhyang University) ;
  • Im, Jungkyun (Department of Chemical Engineering, Soonchunhyang University)
  • 이다은 (순천향대학교 나노화학공학과) ;
  • 임정균 (순천향대학교 나노화학공학과)
  • Received : 2019.08.29
  • Accepted : 2019.10.04
  • Published : 2019.10.31

Abstract

As a new emerging technology, stretchable electronics capable of retaining their functions under large deformation have brought great attention to human-friendly soft robots, wearable devices, implantable electronics, flexible displays, smart textiles, and energy storage systems. There is a high demand for a new material that can provide high conductivity and stretchability, simultaneously. In this study, we investigated a highly stretchable and conductive fibrous mat prepared by a facile spray coating method. Without relying on complicated lithography or printing methods, the spray coating method allowed the patterns to be produced in desired shapes. In the experiment, an elastic fibrous mat was made by electrospinning, followed by spray coating with a silver ionic solution. After chemical reduction, the resulting pattern exhibited elasticity and conductivity, showing high stretchability up to 1,000% strain with similar elastic modulus to that of natural rubber, and low relative resistance change ratio (${\Delta}R/R_0$). This suggests that the patterned fibrous mat has a high potential to function as a stretchable electrode in electronic devices.

Keywords

References

  1. W. Wu, "Stretchable Electronics: Functional Materials, Fabrication Strategies and Applications", Sci. Technol. Adv. Mat., 2019, 20, 187-224. https://doi.org/10.1080/14686996.2018.1549460
  2. S. Yao and Y. Zhu, "Nanomaterial‐enabled Stretchable Conductors: Strategies, Materials and Devices", Adv. Mater., 2015, 9, 1480-1511.
  3. Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, "Bio‐Inspired Chemical Fabrication of Stretchable Transparent Electrodes", Small, 2015, 11, 3444-3449. https://doi.org/10.1002/smll.201500529
  4. S. Huang, Y. Liu, Y. Zhao, and C. F. Guo, "Flexible Electronics: Stretchable Electrodes and Their Future", Adv. Funct. Mater., 2019, 29, 1805924. https://doi.org/10.1002/adfm.201805924
  5. M. Park, J. Im, J. J. Park, and U. Jeong, "Micropatterned Stretchable Circuit and Strain Sensor Fabricated by Lithography on an Electrospun Nanofiber Mat", ACS Appl. Mater. Inter., 2013, 5, 8766-8771. https://doi.org/10.1021/am4026032
  6. X. Chen, H. Lin, P. Chen, G. Guan, J. Deng, and H. Peng, "Smart, Stretchable Supercapacitors", Adv. Mater., 2014, 26, 4444-4449. https://doi.org/10.1002/adma.201400842
  7. https://www.giiresearch.com/report/smrc521462-stretchableelectronics-global-market-outlook.html
  8. C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, "Highly Stretchable and Transparent Nanomesh Electrodes Made by Grain Boundary Lithography", Nat. Commun., 2014, 5, 3121. https://doi.org/10.1038/ncomms4121
  9. W. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou, Y. Sun, M.-S. Song, Z. Bao, and Y. Cui, "Stretchable Lithium‐Ion Batteries Enabled by Device‐Scaled Wavy Structure and Elastic‐Sticky Separator", Adv. Energy Mater., 2017, 7, 1701076. https://doi.org/10.1002/aenm.201701076
  10. R. C. Chiechi, E. A. Weiss, M. D. Dickey, and G. M. Whitesides, "Eutectic Gallium-Indium (EGaIn): A Moldable Liquid Metal for Electrical Characterization of Self‐Assembled Monolayers", Angew. Chem. Int. Edit., 2008, 47, 142-144. https://doi.org/10.1002/anie.200703642
  11. T. Shay, O. D. Velev, and M. D. Dickey, "Soft Electrodes Combining Hydrogel and Liquid Metal", Soft Matter, 2018, 14, 3296-3303. https://doi.org/10.1039/C8SM00337H
  12. I. J. Lee, K. E. Kim, H. S. Ma, and D. H. Baik, "Preparation of Carbon Nanotube Fiber/conductive Materials Composites and Their Electrical Properites", Text. Sci. Eng., 2019, 56, 35-40. https://doi.org/10.12772/TSE.2019.56.035
  13. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network", Adv. Mater., 2012, 24, 3326-3332. https://doi.org/10.1002/adma.201200359
  14. S. Luo and T. Liu, "SWCNT/Graphite Nanoplatelet Hybrid Thin Films for Self‐Temperature‐Compensated, Highly Sensitive, and Extensible Piezoresistive Sensors", Adv. Mater., 2013, 25, 5650-5657. https://doi.org/10.1002/adma.201301796
  15. M. Segev-Bar and H. Haick, "Flexible Sensors Based on Nanoparticles", ACS Nano, 2013, 7, 8366-8378. https://doi.org/10.1021/nn402728g
  16. D.-E. Lee, E.-Y. Choi, H.-J. Yang, A. S. N. Murthy, T. Singh, J.-M. Lim, and J. Im, "Highly Stretchable Superhydrophobice Surface by Silica Nanoparticle Embedded Electrospun Fibrous Mat", J. Colloid. Interface Sci., 2019, 555, 532-540. https://doi.org/10.1016/j.jcis.2019.08.004
  17. S. Jin, Y. Park, and C. H. Park, "Preparation of Breathable and Superhydrophobic Polyurethane Electrospun Webs with Silica Nanoparticles", Text. Res. J., 2016, 86, 1816-1827. https://doi.org/10.1177/0040517515617417
  18. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. B. Shim, S. Jeon, D. Y. Chung, J. Bae, U. Jeong, and K. Kim, "Highly Stretchable Electric Circuits from a Composite Material of Silver Nanoparticles and Elastomeric Fibres", Nat. Nanotechnol., 2012, 7, 803-809. https://doi.org/10.1038/nnano.2012.206
  19. S. F. Zhao, J. H. Li, D. X. Cao, Y. J. Gao, W. P. Huang, G. P. Zhang, R. Sun, and C. P. Wong, "Percolation Threshold- Inspired Design of Hierarchical Multiscale Hybrid Architectures Based on Carbon Nanotubes and Silver Nanoparticles for Stretchable and Printable Electronics", J. Mater. Chem. C., 2016, 4, 6666-6674. https://doi.org/10.1039/C6TC01728B
  20. W. Simchareon, T. Amnuaikit, P. Boonme, W. Taweepreda, and W. Pichayakorn, “Characterization of Natural Rubber Latex Film Containing Various Enhancers”, Procedia Chem., 2012, 4, 308-312. https://doi.org/10.1016/j.proche.2012.06.043
  21. M. M. Rahman, M. S. I. Mozumder, M. A. Islam, M. J. Uddin, M. A. Rashid, and M. E. Haque, "Preparation and Preliminary Study on Irradiated and Thermally Treated Polypropylene (PP)-Styrene Butadiene Rubber (SBR) Composite", J. Sci. Res., 2011, 3, 471-479. https://doi.org/10.3329/jsr.v3i3.3288
  22. S. Ribeiro, P. Costa, C. Ribeiro, V. Sencadas, G. Botelho, and S. Lanceros-Mendez, "Electrospun Styrene-butadiene-styrene Elastomer Copolymers for Tissue Engineering Applications: Effect of Butadiene/styrene Ratio, Block Structure, Hydrogenation and Carbon Nanotube Loading on Physical Properties and Cytotoxicity", Compos. Part B-Eng., 2014, 67, 30-38. https://doi.org/10.1016/j.compositesb.2014.06.025