DOI QR코드

DOI QR Code

Improvement of The Desalination Performance through The Split Electrodes in The Capacitive Deionization Process

축전식 탈염 공정에서의 분할 전극을 통한 탈염 성능 향상

  • Kim, Yong Bin (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 김용빈 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2019.10.28
  • Accepted : 2019.10.30
  • Published : 2019.10.31

Abstract

The purpose of this study was to improve the desalination performance by using split electrodes in the capacitive desalination process. The experiment was carried out by measuring the desalination efficiency of the NaCl aqueous solution according to the partitioning of the electrode at 20 mL/min flow rate, 1.2 V, 3 min adsorption conditions, and -1 V, 1 min desorption conditions. The desalination efficiency for the non-divided electrodes with a surface area of $146cm^2$ reached 40% while the divided electrode with a surface area of $133cm^2$ showed a desalination efficiency of 57%. The desalination efficiency of the same split electrode was 49% at 2 cm divided interval and 57% at 1cm divided interval. The desalination efficiency of the split electrode was higher than that of the normal CDI and narrower divided intervals increased the performance.

본 연구에서는 축전식 탈염 공정에 분할 전극을 이용하여 탈염 성능을 향상하고자 하였다. 운전조건으로 NaCl 수용액에 대하여 20 mL/min의 유속과 1.2 V, 3분의 흡착 조건과 -1 V, 1분의 탈착 조건으로 전극의 분할 여부에 따른 탈염 효율을 측정함으로써 실험을 진행하였다. 분할되지 않은 전극에서는 유효면적이 $146cm^2$일 때 40%의 탈염 효율이 나타났고 분할 전극의 유효면적이 $133cm^2$일 때 57%의 탈염 효율을 보였다. 같은 분할된 전극에서 탈염 효율은 2 cm 간격을 두었을 때 49%, 1 cm의 간격을 두었을 때 57%로 확인되었다. 탈염 효율이 일반 CDI보다 분할 전극 CDI가 높았고 분할 전극 사이의 간격이 좁을수록 증가하였다.

Keywords

References

  1. Y. Li, Z. Ding, J. Li, J. Li, T. Lu, and L. Pan, "Highly efficient and stable desalination via novel hybrid capacitive deionization with redox-active polyimide cathode", Desalination, 469, 1 (2019).
  2. C. O. Park, J. S. Oh, and J. W. Rhim, "Preparation of carbon electrodes using activated carbon fibers and their performance characterization for capacitive deionization process", Membr. J., 28, 272 (2018).
  3. R. Zhao, S. Porada, P. M. Biesheuvel, and A. van der Wal, "Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis", Desalination, 330, 35 (2013). https://doi.org/10.1016/j.desal.2013.08.017
  4. Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment past, present and future (a review)", Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  5. W. S. Yun, S. I. Cheong, and J. W. Rhim, "Effect of ion exchange capacity on salt removal rate in membrane capacitive deionization process", Membr. J., 28, 332 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.332
  6. C. Bales, P. Kovalsky, J. Fletecher, and T. D. Waite, "Low cost desalination of brackish groundwaters by capacitive deionization (CDI) - Implications for irrigated agriculture", Desalination, 453, 37 (2019). https://doi.org/10.1016/j.desal.2018.12.001
  7. Z. Chen, H. Zhang, C. Wu, L. Luo, and H. Xu, "A study of the effect of carbon characteristics on capacitive deionization (CDI) performance", Desalination, 433, 68 (2018). https://doi.org/10.1016/j.desal.2017.11.036
  8. Y. J. Song, W. S. Yun, and J. W. Rhim, "Studies of performance and enlarged capacity through multi-stages stacked module in membrane capacitive deionization process", Membr. J., 27, 449 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.449
  9. A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, "Advances in seawater", Desalination, 221, 47 (2008). https://doi.org/10.1016/j.desal.2007.01.067
  10. M. W. Ryoo and G. Seo, "Improvement in capacitive deionization function of activated carbon cloth by titania modification", Water Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  11. S. M, Jung, J. H. Choi, and J. H. Kim, "Application of capacitive deionization (CDI) technology to insulin purification process", Sep. Purif. Technol., 98, 31 (2012). https://doi.org/10.1016/j.seppur.2012.06.005
  12. B. Jia and W. Zhang, "Preparation and application of electrodes in capacitive deionization (CDI): A state-of-art review", Nanoscale. Res. Lett., 11, 64 (2016). https://doi.org/10.1186/s11671-016-1284-1
  13. C. Wang, L. Chen, S. Liu, and L. Zhu, "Nitrite desorption from activated carbon fiber during capacitive deionization (CDI) and membrane capacitive deionization (MCDI)", Colloids Surf. A Physicochem. Eng. Asp., 599, 392 (2018).
  14. Y. S. Jeon, S. I. Cheong, and J. W. Rhim, "Design shape of CDI cell applied with APSf and SPEEK and performance in MCDI", Macromol. Res., 25, 712 (2017). https://doi.org/10.1007/s13233-017-5064-2
  15. N. Ge, R. Banerjee, D. Muirhead, J. Lee, H. Liu, P. Shrestha, A. K. C. Wong, J. Jankovic, M. Tam, D. Susac, J. Stumper, and A. Bazylak, "Membrane dehydration with increasing current density at high inlet gas relative humidity in polymer electrolyte membrane fuel cells", J. Power Sources, 422, 163 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.001