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Abstract 
 

It is significant to construct deterministic measurement matrices with easy hardware 
implementation, good sensing performance and good cryptographic property for practical 
compressed sensing (CS) applications. In this paper,  a deterministic construction method of 
bipolar chaotic measurement matrices is presented based on binary sequence family (BSF) and 
Chebyshev chaotic sequence. The column vectors of these matrices are the sequences of BSF, 
where 1 is substituted with -1 and 0 is with 1. The proposed matrices, which exploit the 
pseudo-randomness of Chebyshev sequence, are sensitive to the initial state. The performance 
of proposed matrices is analyzed from the perspective of coherence. Theoretical analysis and 
simulation experiments show that the proposed matrices have limited influence on the 
recovery accuracy in different initial states and they outperform their Gaussian and Bernoulli 
counterparts in recovery accuracy. The proposed matrices can make the hardware implement 
easy by means of linear feedback shift register (LFSR) structures and numeric converter, 
which is conducive to practical CS. 
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1. Introduction 

Different from Nyquist sampling theorem, compressed sensing (CS) is a new revolutionary 
signal sampling framework proposed by Candès, Romberg, Tao and Donoho in 2006 [1, 2]. It 
can improve the sampling efficiency by sampling sparse signals at a rate far lower than the 
Nyquist rate. By exploiting the sparsity property, the original high-dimensional sparse signal 
can be recovered exactly from the lower-dimensional measurement vector with high 
probability by solving an optimization problem. The new idea of CS has caused the extensive 
attention of academic circles and has been applied to various research fields, such as image 
processing, information theory, wireless communication, encryption and radar imaging. CS 
has also potential applications in areas, such as big video data [3] and object tracking [4, 5]. 

The process of CS can be viewed as having two stages: data sampling and signal recovery. 
Let { } NN

iix Rx ∈= =1 be a -k sparse original signal, where { } kxix i ≤≠= 0
0

. The 

lower-dimensional observation signal MRy∈ can be obtained from its linear measurements 
with a measurement matrix NMR ×∈Α , where NM << . In matrix representation, Αxy = . 
This linear process is the data sampling process of CS. As for the signal recovery stage, the 
original high-dimensional sparse signal x can be reconstructed exactly from the 
lower-dimensional measurement vector y by solving the following 0l  minimization 
optimization problem 

0
min x

x
 subject to  Αxy = .                       (1)                                

The above solving problem is NP-hard [6]. The CS theory proves that by using a proper 
measurement matrix Α , solving problem (1) can be replaced with solving the following 1l  
minimization optimization problem 

1
min x

x
 subject to  Αxy = ,                       (2) 

where ∑
=

=
N

i
ixx

1
1

. In this problem, the sparsest estimate of x  can be obtained by basis 

pursuit (BP) algorithm [7]. Besides, there are some greedy algorithms for solving  problem (1) 
directly, such as orthogonal matching pursuit (OMP) [8].  

In CS theory, measurement matrix plays a vital role. In data sampling stage, a better 
measurement matrix can lead to a smaller number of measurements to achieve the same 
reconstruction accuracy. In signal recovery stage, a better measurement matrix can lead to a 
higher reconstruction accuracy at the same number of measurements. Overall, a good 
measurement matrix NMR ×∈Α should ensure that the projected measurements MRy∈  

maintain all the significant information of original signal NRx∈  so that the original signal 
x  can be reconstructed exactly from the lower-dimensional projected measurements y  with 
high probability. Candes and Tao [6] proposed a criteria named Restricted Isometry Property 
(RIP) in which the measurement matrix must satisfy.  

Definition 1.1 For a matrix NMR ×∈Α , if there exists the smallest  number )1,0[∈kδ  such 
that 

2

2

2

2

2

2
)1()-1 xAxx kk δδ +≤≤（                                  (3) 
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holds for any -k sparse signal NRx∈ . Then the matrix Α  is said to satisfy the RIP of order 
k . The kδ  is called the restricted isometry constant (RIC) of order k . 

With some conditions on kδ , RIP implies that the solution of problem (1) is coincident with 
that of problem (2) [9, 10] if the solution of problem (1) exists. 

Coherence is another important criteria to construct RIP matrices.  
Definition 1.2 Let Naaa ,,, 21 ⋅⋅⋅  be the column vectors of matrix Α , then its coherence 

)(Aµ  is defined as 

22
1

,
max)(

ji

ji

Nji aa

aa
A

⋅
=

≤≠≤
µ ,                   (4) 

where j
T
iji aaaa =,  is the inner product of vectors ia  and ja . 

The following lemma [10-12] relates the RIC kδ  and the coherence µ . 

Lemma 1.1 For a matrix Α , the relationship between the coherence  )(Aµ  and the k order 

RIC kδ  is )1)(( −≤ kk Aµδ , where 1
)(

1
+<

Aµ
k . 

From above lemma, it can be seen that the matrices with low coherence satisfy RIP and are 
natural candidates for CS matrices. 

As seen in [13], if k  satisfies 







+<

)(
11

2
1

Aµ
k , any -k sparse signal x  can be 

reconstructed accurately from its undersampling linear measurements Axy =  via BP 
algorithm or OMP algorithm. Therefore, when we design measurement matrix A , the upper 
bound of reconstructed signal sparsity k  can be increased by reducing the coherence )(Aµ , 
which means an increase in reconstruction performance. To realize the reconstruction of 
original signal with high accuracy, we should reduce the coherence )(Aµ  as far as possible. 

The OMP algorithm involves lower complexity than the BP algorithm and requires a shorter 
running time. Therefore, it is relatively simple and fast in hardware implementation and 
becomes a widely used algorithm in hardware design [14, 15]. In this paper, considering the 
practical CS applications, the OMP algorithm is applied for signal recovery to benefit from the 
low coherence of the CS matrices. 

Both RIP [16-19] and coherence [9-13, 20-27] are important tools to analyze the property of 
measurement matrices. In this paper, coherence will be adopted to analyze and illustrate the 
property of constructed measurement matrices, because it is easier to compute. 

Existing measurement matrices can be divided into two categories: random measurement 
matrices and deterministic measurement matrices. For the former, the most widely used 
matrices are Gaussian or Bernoulli ones. Due to that random matrices satisfy RIP with 
overwhelming probability, they are widely used in scientific research. However, in random 
matrices, every element obeys certain probability distribution, where randomness exists. In 
order to realize a random matrix, all elements should be stored and the process is repeated 
when a new realization is needed, which would cost lots of storage resources. Random number 
generation has very high requirement to the hardware, which is not conducive to hardware 
implementation and limits the practical applications of CS. These deficiencies can be 
overcome by deterministic measurement matrices to get rid of the randomness. Although 
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deterministic matrices may need a lot of complex mathematical operations during their 
construction, all elements of these matrices can be computed and generated on the fly only 
once, thus providing storage efficiency. Recently, many researchers have exploited some 
existing theories and techniques to construct deterministic measurement matrices, such as 
Euler Squares [9], extremal set theory [10], near orthogonal systems [12], chaotic systems 
[20-22], Legendre sequences [23], optimal codebooks [24], bipartite graph [25], low-density 
parity-check (LDPC) codes [13, 14, 26, 28], equiangular tight frame theory [27], Reed-Muller 
sequences [29] and sparse fast Fourier transform [30]. In particular, Sasmal et al. [11] 
proposed an optimal deterministic binary CS matrices by using a specialized composition rule 
which exploits the properties of existing binary matrices. The above mentioned deterministic 
measurement matrices show good sensing performance.  

M-sequence is a type of pseudorandom binary sequence, which is also called maximum 
length LFSR sequence. The generation of m-sequence depends on the feedback coefficients of 
LFSR associated with a feedback polynomial. For LFSR, different feedback polynomials 
generate distinct m-sequences [31]. For m-sequence, the properties of balance, excursion 
distribution and auto-correlation are similar to the basic properties of random sequence [32]. 
Therefore, m-sequence is the most widely used pseudorandom sequence. In [31], the BSF is 
constructed based on the linear combination of m-sequences or their shifts such that the 
resulting sequences have low correlation. The implementation of BSF is extremely easy by 
summing LFSR outputs. This paper attempts to relate the notion of BSF to the design of 
deterministic measurement matrices. 

In this paper, inspired by the BSF in [31] and Chebyshev chaotic sequence in [21],  we 
construct a class of deterministic bipolar chaotic measurement matrices named BSFDBC with 
the elements of +1 and -1. First, we choose the trace representative function given in [31] to 
generate the set of binary pseudo-random sequences which constitute the BSF. And then, by 
numeric convert, the BSF is converted to the corresponding bipolar sequence family. By 
selecting some sequences among the bipolar sequence family and using the chaotic-based 
permutation algorithm [21] to put them together in designed order as column vectors, the 
proposed BSFDBC matrix is obtained. The BSFDBC matrices have good potential 
cryptographic property because a brute force search of the permutation operator is of high 
complexity.  

The coherence of BSFDBC matrices is investigated and compared with their Gaussian and 
Bernoulli counterparts. Theoretical analysis and simulation experiments show that the 
proposed BSFDBC matrices have limited influence on the recovery accuracy in different 
initial states and they outperform their Gaussian and Bernoulli counterparts in recovery 
accuracy. Simulation experiments also show that the BSFDBC matrix is sensitive to its initial 
state.  

The remainder of this paper is organized as follows. Section 2 introduces some 
preliminaries about finite field. Section 3 presents the deterministic construction procedure of 
BSFDBC matrices and a related example. Section 4 uses the coherence to analyze the 
proposed BSFDBC matrices and compares the coherence of the BSFDBC matrices with their 
Gaussian and Bernoulli counterparts. Simulation experiments are given to investigate the 
performance of proposed BSFDBC matrices in Section 5. Finally, Section 6 concludes this 
paper. 

 
 
 

https://en.wikipedia.org/wiki/Pseudorandom_binary_sequence
https://en.wikipedia.org/wiki/Pseudorandom_binary_sequence
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2. Preliminaries  

Definition 2.1 Suppose β  is a primitive field element of finite field )(qGF  with q  elements, 
then all the field elements of )(qGF  can be generated with 0 and the powers of β , that is 

( ) },,,1,0{ 20 −== qqGF βββ  . 
Among },,,1,0{ 2−qββ  , the last 1−q  nonzero elements constitute the multiplicative 

group }0{\)(qGF , which is also denoted as *)(qGF . For describing convenience, all 
elements of )(qGF  can also be expressed as }1,,1,0{ −⋅⋅⋅ q . 

Definition 2.2 Let m , n  be positive integers and m  be the factor of n . The trace function 
from )2( nGF  to )2( mGF , denoted as )(xTr n

m , is 

)2(,...)(
)1(

22 nn
m GFxxxxxTr m

nmm

∈+++=
−

.                             (5) 

When 1=m , }1,0{)2()2( == GFGF m . For describing convenience, )(1 xTr n  can also be 
simply expressed as )(xTr . 

3. Construction and Example of BSFDBC  

3.1 Construction of BSFDBC 

The proposed BSFDBC matrices are a class of 12)12( +×− nn  deterministic bipolar chaotic 
matrices with initial state ]1,1[0 −∈r , where 5≥n . The concrete realization steps of 
BSFDBC matrices are as follows: 

Step-1: For given signal length 12 += nN , n  is judged as odd or even. For odd n , choose 
the trace representative function (6) given in [31]; otherwise for even n , choose the trace 
representative function (7) given in [31], where *)2( nGFx∈ , )2(, 10

nGF∈λλ . 

∑
−

=

+++=
2/)1(

2

213
10, )()()()(

10

n

i

i

xTrxTrxTrxs λλλλ                            (6) 

)()()()()(
2/

10

212/
1

12/

2

213
10,

ni

xTrxTrxTrxTrxs n
n

i

+
−

=

+ +++= ∑λλλλ                  (7) 

Step-2: For )2( nGF , select a primitive field element β . Let )(
10

10
,

, t
t sb βλλ

λλ = , where 

}22,,1,0{ −⋅⋅⋅∈ nt , and )2(, 10
nGF∈λλ . The sequence 22

0,
22

0
, )}({}{

10

10 −
=

−
= =

nn

t
t

tt sb βλλ
λλ , 

denoted as 10 ,λλb , is a binary pseudo-random sequence of period 12 −n . The set of binary 
sequences )}2(,|{ 10

, 10 nGF∈λλλλb  constitutes the BSF in [31]. By inputting all the 

elements of binary sequence 22
0

,, }{ 1010 −
==
n

ttb λλλλb  into the numeric convert function (8) one by 

one, we can obtain the corresponding bipolar pseudo-random sequence 22
0

,, }{ 1010 −
==
n

ttc λλλλc .  







=−

=
=

1,1

0,1
10

10

10

,

,
,

λλ

λλ
λλ

t

t
t b

b
c                                                   (8) 
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Order the elements of ),( 10 λλ  lexicographically as )0,0( , )12,0(,),1,0( −n
 , )0,1( , 

)12,1(,),1,1( −n
 , )12,12(,),0,2( −− nn

 .  

When the parameter pair ),( 10 λλ  is given, the bipolar sequence 22
0

,, }{ 1010 −
==
n

ttc λλλλc  is 

deterministic. All sequences of )}2(),2(|{ 10
, 10 nGFGF ∈∈ λλλλc  are put together indexed 

by ),( 10 λλ  in order as column vectors to form a 12)12( +×− nn  matrix A , which has the 
following form 





















=

=

−
−−−

−

−

−
−−−

−

−

−−

12,1
22

1,1
22

0,1
22

12,1
1

1,1
1

0,1
1

12,1
0

1,1
0

0,1
0

12,0
22

1,0
22

0,0
22

12,0
1

1,0
1

0,0
1

12,0
0

1,0
0

0,0
0

12,11,10,112,01,00,0 ],,,|,,,[

n

nnn

n

n

n

nnn

n

n

nn

ccc

ccc
ccc

ccc

ccc
ccc

















 ccccccA

              (9) 

Step-3: Let ),,( 0 lsrR  be the sampled Chebyshev sequence },,,,{ )1(20 slss rrrr −  

generated by the Cheyshev map ))arccos(cos(1 jj rwr ⋅=+  given in [21], where ,2,1,0=j , 

]1,1[0 −∈r  is the initial state and w  is a positive integer larger than 1. The w  is also called 
the degree of the map. For given 0r , record each value of ),,( 0 lsrR  with 5=w , 5=s , and 

12 +== nNl . Then, sort the },,,,{ )1(20 slss rrrr −  in descending order and obtain the 
corresponding index set χ , which will be a chaotic set because of the pseudo-randomness of  

),,( 0 lsrR  [21]. 
Step-4: Permute the column vectors of A  in designed order of set χ  to obtain the 

proposed BSFDBC matrix 
0r

A . In matrix representation, 
00 rr ADA = , where the 

chaotic-based permutation operator 
0r

D  is a deterministic column permutation of an identity 

matrix 
11 22 ++ ×∈

nn

RI  in the designed order of set χ . 
From above construction, it can be seen that the sampling rate of BSFDBC matrices is 

5.02)12( 1 ≈− +nn . For odd 12 += ln , the process for obtaining a column vector in 
1

0

2)12( +×−∈
nn

r RA  can be understood by first adding )1( +l  m-sequences with different 
feedback polynomials and then converting the result summing sequence using element 
substituting in (8). In addition, the related Chebyshev chaotic sequence ),,( 0 lsrR  is 
deterministic with fixed initial state 0r . The corresponding permutation operator 

0r
D  can be 

reflected in the permutation of element order ),( 10 λλ . Hence, 1

0

2)12( +×−∈
nn

r RA  is easy to 
implement by summing LFSR outputs and using numeric converter, which is conducive to 
practical CS. 

Remark 1 Suppose the adversary knows A  and wants to know 
00 rr ADA = , the 

permutation operator 
0r

D  is required which corresponds to a permutation of integers 

]2,,2,1[ 1+n
 . A brute force search of the permutation is needed and the complexity is )!2( 1+n . 
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Note that 5≥n , ！64)!2( 1 ≥+n . The cost of guessing the permutation operator 
0r

D  is very 
high, which is too expensive for the adversary to be practical. Therefore, the BSFDBC 
matrices have good potential cryptographic property. 

Remark 2 The initial state 0r  of the BSFDBC determines the permutation order according 
to the construction steps. A different 0r  will lead to a different permutation order, which will 
further generate a different BSFDBC matrix. Therefore, 0r  can be considered as the secret key 
to construct the BSFDBC matrix, which would be  favorable in practical CS applications. 

Remark 3 Since 0r  can be any value among the interval ]1,1[− , a large number of BSFDBC 
matrices can be obtained. These matrices can be used as encryption keys for cryptography, 
which implies that encryption occurs implicitly in the data sampling stage. 

 

3.2 An Example of BSFDBC 

In the following, we give an example of a column vector of BSFDBC 
0r

A  of size 256127× .  

Let )2( 7GF  be the finite field with the primitive field element β satisfying 

017 =++ ββ . In matrix A , the binary sequence }{ k
t

k b=b , which corresponds to k th 

column vector, is given by (6) at 7=n , and tx β=  for 1260 ≤≤ t .  
For 1128 10 ++= iik with 1,00 =i and 1270 1 ≤≤ i , if 1271 ≠i , 

)( 95310 tttitik
t Trb ββββββ +++= ; if 1271 =i , )( 950 tttik

t Trb ββββ ++= . For 

different values of ),( 10 ii , 256 cyclically distinct binary sequences }{ k
t

k b=b  are obtained, 

which correspond to all column vectors of BSFDBC. Let }{ tg=g , )( t
t Trg β=  and  

}{)(
jt

j g=g . Then g  is given by 

.1010101111111100110010100101110
11111101100010110101100001001001
11111010000111010100110001011001
01010001111000011000011000000100}{ =tg

                      (10) 

From above, it is seen that }{ k
t

k b=b  can be obtained from the linear combination of 

m-sequences g , )3(g , )5(g , )9(g  or their shifts. For 1128 10 ++= iik  with 1,00 =i  and 

1270 1 ≤≤ i , if 1271 ≠i , ttitit
k
t ggggb 953 10

+++= ++ ; otherwise if 1271 =i , 

ttit
k
t gggb 950

++= + . By inputting all the elements of binary sequence }{ k
t

k b=b  into the 
numeric convert function (8) one by one, we can obtain the corresponding bipolar sequence 

}{ k
t

k c=c , which is the k th column vector of A . After the permutation operator 
0r

D , the 

column vector }{ k
t

k c=c  is mapped into the corresponding position of 
00 rr ADA = . 
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4. Coherence Analysis  

In this section, for proposed BSFDBC matrix 
00 rr ADA =  constructed in section 3, the 

coherence )(
0r

Aµ  is used to analyze and compare the performance of BSFDBC matrix with 
its Gaussian and Bernoulli counterparts.  

In order to derive the coherence of proposed BSFDBC matrix 
0r

A , the following one 
definition and one lemma are first introduced [31]. 

Definition 4.1 Let ),,,( 10 vaaa =a  and ),,,( 10 vbbb =b  be two different binary 
sequence of period v . The cross-correlation of a  and b  is defined as 

∑
−

=

+ +−=
1

0
, )1()(

v

i

ba iiC ττba   for 10 −≤≤ vτ , where τ+i  is computed modulo v . If a  and b  

are cyclically equivalent, )(, τbaC  is the auto-correlation of sequence a . 
Lemma 4.1 For odd n ,  the cross-correlation of any two binary sequences a  and b  given 

by (6) is }21,21,1{)( 2)3(2)1(
,

++ ±−±−−∈ nnC τba . For even n , the cross-correlation of any 

two binary sequences a and b given by (7) is }21,21,21,1{)( 22/122
,

++ ±−±−±−−∈ nnnC τba .                          

Theorem 4.1 Let 
0r

A  be a )5(2)12( 1 ≥×− + nnn  BSFDBC matrix constructed in Section 3, 

where 
00 rr ADA = , and ]1,1[0 −∈r . If n  is odd, 

12
21)(

2)3(

0 −
+

≤
+

n

n

rAµ ; if n  is even, 

12
21)(

22

0 −
+

≤
+

n

n

rAµ . 

Proof: For matrix 
1

0

2)12( +×−∈
nn

r RA , we have )()()(
00

AADA µµµ == rr  according to 

the definition of coherence in (4), because 
0r

D  only permute the column vectors of A  in 

designed order. To compute )(
0r

Aµ , we can compute )(Aµ . Let iA  be the i th column of 
A . Then 

22
21

,
max)(

1 ii

ji

ji n AA

AA
A

⋅
=

+≤≠≤
µ .                    (11) 

Note that sequence iA  and jA  are bipolar sequences of period 12 −n  with the elements of 
+1 and -1. We have  

21

22
)12( −== nji AA .                                           (12) 

It can be seen from the construction in Section 3 that the  matrix 
12)12( +×−∈

nn

RA  has a BSF 
)}2(,|{ 10

, 10 nGF∈λλλλb and a bipolar sequence family )}2(,|{ 10
, 10 nGF∈λλλλc  

correspondingly. The column vector iA of A is the bipolar sequence ic in 
)}2(),2(|{ 10

, 10 nGFGF ∈∈ λλλλc . 

Let 22
0}{ −

==
n

t
i
t

i bb and 22
0}{ −

==
n

t
j

t
j bb be any two binary sequences of 

)}2(),2(|{ 10
, 10 nGFGF ∈∈ λλλλb . From (8), the corresponding two bipolar sequences 
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22
0}{ −

==
n

t
i
t

i cc and 22
0}{ −

==
n

t
j

t
j cc are obtained, both of which belong to 

)}2(),2(|{ 10
, 10 nGFGF ∈∈ λλλλc .We have  

).0()1()()(,, ,

22

0

22

0
ji

n
j

t
i
t

n

Cscsc
t

bb

t

j
t

i
t

jiji
bbccAA =−=== ∑∑

−

=

+
−

=     
(13)

 
Notice that  

)},2(,|{

})2(),2(|{,

10
,

10
,

10

10

n

nji

GF

GFGF

∈⊂

∈∈∈

λλ

λλ
λλ

λλ

b

bbb
 

where )}2(,|{ 10
, 10 nGF∈λλλλb  is the BSF in [31]. 

Using Lemma 4.1, we can obtain that  if n  is odd,  

.2121,21,1max)0(max,max 2)3(2/)3(2)1(
,2121 11

+++

≤≠≤≤≠≤
+=±−±−−≤=

++

nnn

ji

ji

ji
jinn

C bbAA   

Similar to the derivation process for odd n , for even n , 22

21
21,max

1

+

≤≠≤
+=

+

nji

ji n
AA .  

Theorem 4.1 is proved after substitution of above conclusion and (12) into (11). 
 

Remark of Theorem 4.1 Theorem 4.1 demonstrates that the initial state 0r  of BSFDBC 
matrix 

0r
A  has no influence on the upper bound of coherence )(

0r
Aµ . From the proof, we 

can see that if ]1,1[10 −∈≠ rr , )()()(
10

AAA µµµ == rr . This means that the value of 

coherence )(
0r

Aµ  of BSFDBC matrix 
0r

A  has no relation with its initial state 0r . 
In order to compare the coherence of proposed BSFDBC matrices with their Gaussian and 

Bernoulli counterparts, the following two lemmas are introduced [33]. 
Lemma 4.2 Let p

iix 1}{ =  and p
iiy 1}{ =  be sequences of independent and identically distributed 

zero-mean Gaussian random variables with variance 2σ . Then 

.
)2(4

exp2Pr 22

2

1








+

−≤







≥∑

= tp
ttyx

p

i
ii σσ

          (14) 

Lemma 4.3 Let p
iix 1}{ =  and p

iiy 1}{ =  be sequences of independent and identically distributed 

zero-mean bounded  random variables which satisfy axi ≤  and 2ayx ii ≤ . Then 

.
2

exp2Pr 4

2

1








−≤








≥∑

= pa
ttyx

p

i
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Theorem 4.2 For a )5(2)12( 1 ≥×− + nnn  BSFDBC matrix 
0r

A , its coherence )(
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Aµ  is 
smaller than the corresponding Gaussian matrix B  and Bernoulli matrix D  with the elements 
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where ib  and id  are column vectors of the matrices B  and D  for 121 +≤≤ ni , 
respectively. 
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Without loss of generality, we prove the theorem in case of even n . 
Let 12
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iiy  be any two column vectors of Gaussian matrix B . Based on 
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Therefore, the theorem is proved in case of even n . Similarly, the same conclusion can be 

obtained in case of odd n . Thus, Theorem 4.2 is proved. 
 
Remark of Theorem 4.2 For CS matrix, reducing the coherence leads to the reconstruction 

of original signal with higher accuracy. Theorem 4.2 demonstrates that reconstruction 
performance of the BSFDBC matrix is superior to its Gaussian and Bernoulli counterparts.  

5. Simulation and Results 
In this section, simulation experiments with sparse signals and image signals are given to 
investigate the performance of proposed BSFDBC matrices. Here, Gaussian and Bernoulli 
random matrices of same size are used for comparison. In Gaussian matrix construction, each 
element obeys standard normal distribution )1,0(N . In Bernoulli matrix construction, each 
element is 1 or -1 with equal probability. 

For sparse signals, two types of BSFDBC matrices of size 12)12( +×− nn  are generated with 
initial state 0r : (i) BSFDBC matrices of size 512255×  for even n  and 8=n ; (ii) BSFDBC 

matrices of size 256127×  for odd n  and 7=n . The k -sparse 12 1×+n  original signal x  is 
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generated by first selecting k  nonzero locations uniformly randomly among the total 12 +n  
locations and then taking corresponding k  nonzero values by independent and identically 
distributed standard normal distribution )1,0(N . For each sparsity level k , 1000 experiments 
are averaged  to obtain the corresponding result. Suppose Rx  is the reconstructed signal from 
OMP. For noiseless signal recovery, if 6

2
10−<− Rxx  satisfies in one experiment, this 

reconstruction experiment is claimed to be successful. The successful reconstruction 
probability equals the successful reconstruction times divided by 1000. For noisy signal 
recovery, additive Gaussian noise e is added to the original sparse signal x , where the 
signal-to-noise ratio (SNR) can be set. Therefore, given a sensing matrix Α , we have the 
measurement vector AeAxexΑy +=+= )( , where Ae is the noise term. The 
reconstruction SNR is defined as  

dBSNR
R

)(log20)(
2

2
10 xx

x
x

−
⋅= .                                (24) 

For image signals x  of size nm× , the performance of BSFDBC matrix 
0r

A  is 
investigated in image reconstruction using the block CS algorithm. The image I  is divided 
into smaller subimage set },,2,1|{ Nll =I  of equal size. For each subimage lI , the sparse 
vector ld  is obtained by the vectorized version of ls , which is the two-dimensional 
Daubechies 9/7 discrete wavelet transform (DWT) of lI . By using all the wavelet coefficients 
of ld , the dimensionality of the reconstruction problem can be determined. A down-sampling 
for ld  is implemented to get the compressed measurements lrl dAy

0
= . For image 

reconstruction, OMP algorithm is used to recover ld (and consequently lI ) from the reduced 
vector ly . Considering the tradeoff among reconstruction quality, hardware implementation 
and recovery time, the block size are selected to be 1632×  and 3232× , which correspond to 
two types of BSFDBC matrices. Let Rx be the reconstructed image. The peak signal-to-noise 
ratio (PSNR) is defined as  

.)
)/(

255(log10)( 2

2

2

10 dB
nm

PSNR
R ⋅−

⋅=
xx

x                      (25) 

Note that if the original image x  is a three-dimensional color image, the signal x  is first 
converted to be a two-dimensional grayscale image signal Fx  by concatenating its R, G, B 
components in column extension form and then the resulting signal Fx  and corresponding 
reconstruction signal F

Rx  are applied to calculate )(xPSNR . 

5.1 BSFDBC in Different Initial States 
For  matrices of size 512255× , Fig. 1(a) presents the successful reconstruction probability 
of noiseless k -sparse 1512×  signals under different initial states 0r , where 

,115}{60,95,105∈k , and 11 0 ≤≤− r . For matrices of size 256127× , Fig. 1(b) presents 
the successful reconstruction probability of noiseless k -sparse 1256×  signals under 
different initial states 0r , where 55}{20,45,50,∈k , and 11 0 ≤≤− r . 
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Fig. 1 shows that for all values of sparsity level, the initial state of the BSFDBC has limited 

influence on the recovery accuracy. For instance, for matrices of size 512255× , the 
associated successful reconstruction probabilities at sparsity 105 vary in a limited range 

]757.0,71.0[ . This result is due to the insensitivity of coherence of BSFDBC matrix to its 
initial state. 

 
 

  
(a) (b) 

Fig. 1. The successful reconstruction probability versus initial state for noiseless sparse signals where 
sparsity level varies. (a) The matrices of size 512255× , (b) The matrices of size 256127 ×  

 

5.2 Key Sensitivity of BSFDBC  

As described in Section 3, the BSFDBC matrix 
0r

A  is constructed based on BSF and 

Chebyshev chaotic sequence with secret key 8.00 =r . The matrix 
0r

A  can be used as 
encryption key for cryptography, which implies that encryption occurs implicitly in the data 
sampling stage. As for the signal recovery, consider the matrix 

0r
A  generated by the right key 

0.80 =r  and 
1r

A  generated by the wrong key 1r . The test image is the “liftingbody” of size 
512512×  shown in Fig. 2(a), where the block size is selected to be 1632× . Fig. 2(b) and 

Fig. 2(c) are the decrypted image with wrong keys 0.31 =r  and -0.81 =r , respectively. Fig. 
2(d) is the decrypted image with right key 8.00 =r . The according reconstruction PSNR for 
Fig. 2(b), Fig. 2(c) and Fig. 2(d) are 2.01dB, 2.14dB and 36.48dB, respectively. Obviously, 
the encrypted image cannot be decrypted correctly with wrong key 1r . Fig. 3 presents the 
reconstruction PSNR for the “liftingbody” decrypted with different key 1r , where 11 1 ≤≤− r . 
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(a) (b) 

                
(c) (d) 

Fig. 2. Performance of  BSFDBC for “liftingbody”. (a) Original image,  (b) Decrypted image with 
wrong key 0.3, (c) Decrypted image with wrong key -0.8,  (d) Decrypted image with right key 0.8 

 

 
Fig. 3. The reconstruction PSNR for the “liftingbody” decrypted with different key 

 
Fig. 3 shows that the image signal cannot be decrypted correctly with wrong key 01 rr ≠ . 

Therefore, the BSFDBC 
0r

A  is sensitive to the secret key 0r  and data security can be ensured 
effectively. 

 

5.3 BSFDBC for Sparse Signals 
Without loss of generality, the initial state of BSFDBC matrix is set to be 0.8 in this section 
and later one. 

Example 1: For matrices of size 512255× , Fig. 4(a) presents the successful 
reconstruction probability of noiseless k -sparse 1512×  signals under different sparsity 
levels, where 15030 ≤≤ k . For matrices of size 256127× , Fig. 4(b) presents the successful 
reconstruction probability of noiseless k -sparse 1256×  signals under different sparsity 
levels, where 8010 ≤≤ k  .  
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(a) (b) 

Fig. 4. The successful reconstruction probability versus sparsity level for noiseless sparse signals. (a) 
The matrices of size 512255× , (b) The matrices of size 256127 ×  

 
Fig. 4 shows that the reconstruction performance of BSFDBC matrix is superior to its 

Gaussian and Bernoulli counterparts. For instance, for the BSFDBC, Gaussian and Bernoulli 
matrices of size 512255× , the associated successful reconstruction probabilities at sparsity 
70 are 0.994, 0.69, and 0.718, respectively. This result is due to the smaller coherence 
provided by BSFDBC matrix than the other two. 
 

Example 2: In this example, the 30dB noise level is added to the original sparse signal. For 
matrices of size 512255× , Fig. 5(a) presents the reconstruction SNR of noisy k -sparse 

1512×  signals under different sparsity levels, where 15030 ≤≤ k . For matrices of size 
256127× , Fig. 5(b) presents the reconstruction SNR of noisy k -sparse 1256×  signals 

under different sparsity levels, where 8010 ≤≤ k  .  
Fig. 5 shows that for all values of sparsity level, the BSFDBC matrix has more SNR than the 

Gaussian and Bernoulli matrices. For instance, for the BSFDBC, Gaussian and Bernoulli 
matrices of size 512255× , the associated reconstruction SNRs at sparsity 70 are 32.98 dB,  
31.34 dB and 31.34 dB, respectively. This is because that the BSFDBC matrix has smaller 
coherence than the other two, which is more conducive to signal recovery. 

 

  
(a) (b) 

Fig. 5. The reconstruction SNR versus sparsity level for noisy sparse signals with SNR of 30 dB. (a) 
The matrices of size 512255× , (b) The matrices of size 256127 ×  

 



4660                                                                Cunbo Lu et al.: Binary Sequence Family for Chaotic Compressed Sensing 

  
(a) (b) 

Fig. 6. The reconstruction SNR versus input SNR  for noisy sparse signals. (a) The matrices of size 
512255× , (b) The matrices of size 256127 ×  

 
Example 3: In this example, the sparsity level of original signal is fixed and its noise level 

varies. For  matrices of size 512255× , Fig. 6(a) presents the reconstruction SNR of noisy 
70-sparse 1512×  signals under different noise levels. For matrices of size 256127× , Fig. 
6(b) presents the reconstruction SNR of noisy 35-sparse 1256×  signals under different noise 
levels.  

Fig. 6 shows that the BSFDBC matrix gives higher reconstruction SNR than the 
corresponding Gaussian and Bernoulli matrices in different noise levels. Here, we provide 
some experiment results via the BSFDBC, Gaussian and Bernoulli matrices of size 512255× . 
When the input SNR is 50dB, the associated reconstruction SNRs are 54.62 dB, 51.25 dB and 
51.41 dB, respectively.  

From above three examples, it can be found that the BSFDBC matrices give better recovery 
performance than their Gaussian and Bernoulli counterparts in noiseless and noisy scenarios. 

 

5.4 BSFDBC for Image Signals 
As shown in Fig. 7, the test images include three grayscale images and three color images. The 
three grayscale images are “lena” of size 256256× , “peppers” of size 256256×  and 
“airport” of size 10241024× , while the three color images are “Earth” of size 3512512 ×× , 
“airplane” of size 3512512 ××  and “bone” of size 3653675 ×× . Table 1 presents the 
reconstruction PSNR for different test images with block size 1632×  and 3232× . 
 

   
(a) (b) (c) 
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(d) (e) (f) 

Fig. 7. Test images. (a) Lena, (b) Peppers, (c) Airport, (d) Earth, (e) Airplane,  (f) Bone 
 

Table 1. The reconstruction PSNR (dB) for different test images with block size 1632×  and 3232×  

    Matrices BSFDBC 
 

Gaussian 
 

Bernoulli 

Block  size 32×16 32×32 32×16 32×32 32×16 32×32 

Lena 27.87 28.28 26.40 27.34 26.43 27.36 

Peppers 29.35 30.18 28.28 29.01 28.28 28.95 

Airport 26.84 27.17 26.00 26.24 25.96 26.29 

Earth 30.56 30.84 29.73 30.01 29.71 29.97 
Airplane 31.34 31.85 30.03 30.62 30.15 30.76 

Bone 31.02 32.12 29.88 31.19 29.48 31.39 
 

From Table 1, it is observed that for all test images, the BSFDBC matrix has more 
reconstruction PSNR than the Gaussian and Bernoulli matrices. In addition, the reconstruction 
PSNR increases as the block size. 

Simulation experiments with sparse signals and image signals show that the reconstruction 
performance of  BSFDBC matrices is superior to their Gaussian and Bernoulli counterparts, 
which is coincide with the conclusion of Theorem 4.2. Consequently, inspired from BSF and 
Chebyshev chaotic sequence, the designed BSFDBC matrices possess the characteristics of 
easy hardware implementation, good sensing performance and good cryptographic property. 
These characteristics can make the proposed matrices applied to practical CS applications, 
such as sparse signal restore, image block CS and image encryption. 

6. Conclusion 
On the basis of BSF and Chebyshev chaotic sequence, this paper constructs a class of 
deterministic bipolar measurement matrices named BSFDBC and gives related example. The 
coherence of proposed BSFDBC matrices is investigated and derived theoretically to be 
smaller than the corresponding Gaussian and Bernoulli random matrices. Simulation 
experiments with sparse signals and image signals show that the proposed BSFDBC matrix is 
sensitive to its initial state, has limited influence on the recovery accuracy in different initial 
states and it outperforms its Gaussian and Bernoulli counterparts in recovery accuracy. The 
BSFDBC matrices possess the characteristics of easy hardware implementation, good sensing 
performance and good cryptographic property, which is conducive to practical CS. 
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