DOI QR코드

DOI QR Code

G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells

  • Cho, Eunah (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Kwon, Yeo-Jung (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Ye, Dong-Jin (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Baek, Hyoung-Seok (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Kwon, Tae-Uk (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Choi, Hyung-Kyoon (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University) ;
  • Chun, Young-Jin (College of Pharmacy and Center for Metareceptome Research, Chung-Ang University)
  • Received : 2019.04.15
  • Accepted : 2019.06.04
  • Published : 2019.11.01

Abstract

Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrin-regulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ${\beta}$-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

Keywords

References

  1. Antalis, C. J., Uchida, A., Buhman, K. K. and Siddiqui, R. A. (2011) Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clin. Exp. Metastasis 28, 733-741. https://doi.org/10.1007/s10585-011-9405-9
  2. Bao, Y., Hata, Y., Ikeda, M. and Withanage, K. (2011) Mammalian Hippo pathway: from development to cancer and beyond. J. Biochem. 149, 361-379. https://doi.org/10.1093/jb/mvr021
  3. Canel, M., Serrels, A., Miller, D., Timpson, P., Serrels, B., Frame, M. C. and Brunton, V. G. (2010) Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res. 70, 9413-9422. https://doi.org/10.1158/0008-5472.CAN-10-1454
  4. Cheishvili, D., Stefanska, B., Yi, C., Li, C. C., Yu, P., Arakelian, A., Tanvir, I., Khan, H. A., Rabbani, S. and Szyf, M. (2015) A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness. Oncotarget 6, 33253-33268. https://doi.org/10.18632/oncotarget.5291
  5. Danen, E. H. and Yamada, K. M. (2001) Fibronectin, integrins, and growth control. J. Cell. Physiol. 189, 1-13. https://doi.org/10.1002/jcp.1137
  6. Elisha, Y., Kalchenko, V., Kuznetsov, Y. and Geiger, B. (2018) Dual role of E-cadherin in the regulation of invasive collective migration of mammary carcinoma cells. Sci. Rep. 8, 4986. https://doi.org/10.1038/s41598-018-22940-3
  7. Fan, R., Kim, N. G. and Gumbiner, B. M. (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl. Acad. Sci. U.S.A. 110, 2569-2574. https://doi.org/10.1073/pnas.1216462110
  8. Freeman, A. K. and Morrison, D. K. (2011) 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. Semin. Cell Dev. Biol. 22, 681-687. https://doi.org/10.1016/j.semcdb.2011.08.009
  9. Fukunaga, T., Fujita, Y., Kishima, H. and Yamashita, T. (2018) Methylation dependent down-regulation of G0S2 leads to suppression of invasion and improved prognosis of IDH1-mutant glioma. PLoS ONE 13, e0206552. https://doi.org/10.1371/journal.pone.0206552
  10. Gelmon, K., Dent, R., Mackey, J. R., Laing, K., McLeod, D. and Verma, S. (2012) Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann. Oncol. 23, 2223-2234. https://doi.org/10.1093/annonc/mds067
  11. Glentis, A., Gurchenkov, V. and Matic Vignjevic, D. (2014) Assembly, heterogeneity, and breaching of the basement membranes. Cell Adhes. Migr. 8, 236-245. https://doi.org/10.4161/cam.28733
  12. Guan, J. L. (2010) Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life 62, 268-276.
  13. Gupta, S. K. and Vlahakis, N. E. (2009) Integrin ${\alpha}$9$\beta$1 mediates enhanced cell migration through nitric oxide synthase activity regulated by Src tyrosine kinase. J. Cell Sci. 122, 2043-2054. https://doi.org/10.1242/jcs.041632
  14. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  15. Hatsell, S., Rowlands, T., Hiremath, M. and Cowin, P. (2003) $\beta$-catenin and Tcfs in mammary development and cancer. J. Mammary Gland Biol. Neoplasia 8, 145-158. https://doi.org/10.1023/A:1025944723047
  16. Heckmann, B. L., Zhang, X., Saarinen, A. M. and Liu, J. (2016) Regulation of G0/G1 switch gene 2 (G0S2) protein ubiquitination and stability by triglyceride accumulation and ATGL interaction. PLoS ONE 11, e0156742. https://doi.org/10.1371/journal.pone.0156742
  17. Heckmann, B. L., Zhang, X., Xie, X., Saarinen, A., Lu, X., Yang, X. and Liu, J. (2014) Defective adipose lipolysis and altered global energy metabolism in mice with adipose overexpression of the lipolytic inhibitor G0/G1 switch gene 2 (G0S2). J. Biol. Chem. 289, 1905-1916. https://doi.org/10.1074/jbc.M113.522011
  18. Hood, J. D. and Cheresh, D. A. (2002) Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91-100. https://doi.org/10.1038/nrc727
  19. Hou, S., Isaji, T., Hang, Q., Im, S., Fukuda, T. and Gu, J. (2016) Distinct effects of $\beta$1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Sci. Rep. 6, 18430. https://doi.org/10.1038/srep18430
  20. Huveneers, S. and Danen, E. H. (2009) Adhesion signaling - crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059-1069. https://doi.org/10.1242/jcs.039446
  21. Kim, N. G. and Gumbiner, B. M. (2015) Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J. Cell Biol. 210, 503-515. https://doi.org/10.1083/jcb.201501025
  22. Lai, H., Zhao, X., Qin, Y., Ding, Y., Chen, R., Li, G., Labrie, M., Ding, Z., Zhou, J., Hu, J., Ma, D., Fang, Y. and Gao, Q. (2018) FAK-ERK activation in cell/matrix adhesion induced by the loss of apolipoprotein E stimulates the malignant progression of ovarian cancer. J. Exp. Clin. Cancer Res. 37, 32. https://doi.org/10.1186/s13046-018-0696-4
  23. Lamar, J. M., Stern, P., Liu, H., Schindler, J. W., Jiang, Z. G. and Hynes, R. O. (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Nat. Acad. Sci. U.S.A. 109, E2441-E2450.
  24. Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. and Hermoso, M. A. (2014) Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185. https://doi.org/10.1155/2014/149185
  25. Liu, L., Zhi, Q., Shen, M., Gong, F. R., Zhou, B. P., Lian, L., Shen, B., Chen, K., Duan, W., Wu, M. Y., Tao, M. and Li, W. (2016) $\beta$-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U.S.A. 97, 4262-4266.
  26. Lopez-Knowles, E., Zardawi, S. J., McNeil, C. M., Millar, E. K., Crea, P., Musgrove, E. A., Sutherland, R. L. and O'Toole, S. A. (2010) Cytoplasmic localization of $\beta$-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol. Biomarkers Prev. 19, 301-309. https://doi.org/10.1158/1055-9965.EPI-09-0741
  27. Margheri, F., Serrati, S., Lapucci, A., Anastasia, C., Giusti, B., Pucci, M., Torre, E., Bianchini, F., Calorini, L., Albini, A., Ventura, A., Fibbi, G. and Del Rosso, M. (2009) Systemic sclerosis-endothelial cell antiangiogenic pentraxin 3 and matrix metalloprotease 12 control human breast cancer tumor vascularization and development in mice. Neoplasia 11, 1106-1115. https://doi.org/10.1593/neo.09934
  28. Mierke, C. T., Frey, B., Fellner, M., Herrmann, M. and Fabry, B. (2011) Integrin ${\alpha}$5$\beta$1facilitates cancer cell invasion through enhanced contractile forces. J. Cell Sci. 124, 369-383. https://doi.org/10.1242/jcs.071985
  29. Mitra, S. K. and Schlaepfer, D. D. (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Cur. Opin. Cell Biol. 18, 516-523. https://doi.org/10.1016/j.ceb.2006.08.011
  30. Mukherjee, D. and Zhao, J. (2013) The Role of chemokine receptor CXCR4 in breast cancer metastasis. Am. J. Cancer Res. 3, 46-57.
  31. Nielsen, T. S., Vendelbo, M. H., Jessen, N., Pedersen, S. B., Jorgensen, J. O., Lund, S. and Moller, N. (2011) Fasting, but not exercise, increases adipose triglyceride lipase (ATGL) protein and reduces G(0)/G(1) switch gene 2 (G0S2) protein and mRNA content in human adipose tissue. J. Clin. Endocr. Metab. 96, E1293-E1297. https://doi.org/10.1210/jc.2011-0149
  32. Nieva, C., Marro, M., Santana-Codina, N., Rao, S., Petrov, D. and Sierra, A. (2012) The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy. PLoS ONE 7, e46456. https://doi.org/10.1371/journal.pone.0046456
  33. Pan, D. (2010) The hippo signaling pathway in development and cancer. Dev. Cell 19, 491-505. https://doi.org/10.1016/j.devcel.2010.09.011
  34. Perbal, B. (2004) CCN proteins: multifunctional signalling regulators. Lancet 363, 62-64. https://doi.org/10.1016/S0140-6736(03)15172-0
  35. Pogoda, K., Niwinska, A., Murawska, M. and Pienkowski, T. (2013) Analysis of pattern, time and risk factors influencing recurrence in triple-negative breast cancer patients. Med. Oncol. 30, 388. https://doi.org/10.1007/s12032-012-0388-4
  36. Schlaepfer, D. D., Hanks, S. K., Hunter, T. and van der Geer, P. (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786-791. https://doi.org/10.1038/372786a0
  37. Si, Y., Ji, X., Cao, X., Dai, X., Xu, L., Zhao, H., Guo, X., Yan, H., Zhang, H., Zhu, C., Zhou, Q., Tang, M., Xia, Z., Li, L., Cong, Y. S., Ye, S., Liang, T., Feng, X. H. and Zhao, B. (2017) Src inhibits the Hippo tumor suppressor pathway through tyrosine phosphorylation of Lats1. Cancer Res. 77, 4868-4880. https://doi.org/10.1158/0008-5472.CAN-17-0391
  38. Son, H. and Moon, A. (2010) Epithelial-mesenchymal transition and cell invasion. Toxicol. Res. 26, 245-252. https://doi.org/10.5487/TR.2010.26.4.245
  39. Thike, A. A., Cheok, P. Y., Jara-Lazaro, A. R., Tan, B., Tan, P. and Tan, P. H. (2010) Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Modern Pathol. 23, 123-133.
  40. Tsai, M. S., Bogart, D. F., Castaneda, J. M., Li, P. and Lupu, R. (2002) Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene 21, 8178-8185. https://doi.org/10.1038/sj.onc.1205682
  41. Welch, C., Santra, M. K., El-Assaad, W., Zhu, X., Huber, W. E., Keys, R. A., Teodoro, J. G. and Green, M. R. (2009) Identification of a protein, G0S2, that lacks Bcl-2 homology domains and interacts with and antagonizes Bcl-2. Cancer Res. 69, 6782-6789. https://doi.org/10.1158/0008-5472.CAN-09-0128
  42. Yadav, B. S., Chanana, P. and Jhamb, S. (2015) Biomarkers in triple negative breast cancer: a review. World J. Clin. Oncol. 6, 252-263. https://doi.org/10.5306/wjco.v6.i6.252
  43. Yang, X., Lu, X., Lombes, M., Rha, G. B., Chi, Y. I., Guerin, T. M., Smart, E. J. and Liu, J. (2010) The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11, 194-205. https://doi.org/10.1016/j.cmet.2010.02.003
  44. Ye, D. J., Kwon, Y. J., Shin, S., Baek, H. S., Shin, D. W. and Chun, Y. J. (2017) Induction of integrin signaling by steroid sulfatase in human cervical cancer cells. Biomol. Ther. (Seoul) 25, 321-328. https://doi.org/10.4062/biomolther.2016.155
  45. Yim, C. Y., Sekula, D. J., Hever-Jardine, M. P., Liu, X., Warzecha, J. M., Tam, J., Freemantle, S. J., Dmitrovsky, E. and Spinella, M. J. (2016) G0S2 suppresses oncogenic transformation by repressing a MYC-regulated transcriptional program. Cancer Res. 76, 1204-1213. https://doi.org/10.1158/0008-5472.CAN-15-2265
  46. Zandbergen, F., Mandard, S., Escher, P., Tan, N. S., Patsouris, D., Jatkoe, T., Rojas-Caro, S., Madore, S., Wahli, W., Tafuri, S., Muller, M. and Kersten, S. (2005) The G0/G1 switch gene 2 is a novel PPAR target gene. Biochem. J. 392, 313-324. https://doi.org/10.1042/BJ20050636
  47. Zhang, J., Wang, Y., Yin, Q., Zhang, W., Zhang, T. and Niu, Y. (2013) An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy. Int. J. Clin. Exp. Pathol. 6, 1380-1391.
  48. Zhang, X., Heckmann, B. L., Campbell, L. E. and Liu, J. (2017) G0S2: a small giant controller of lipolysis and adipose-liver fatty acid flux. Biochem. Biophys. Acta 1862, 1146-1154.
  49. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Lin, J. D., Wang, C. Y., Chinnaiyan, A. M., Lai, Z. C. and Guan, K. L. (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962-1971. https://doi.org/10.1101/gad.1664408
  50. Zygulska, A. L., Krzemieniecki, K. and Pierzchalski, P. (2017) Hippo pathway - brief overview of its relevance in cancer. J. Physiol. Pharmacol. 68, 311-335.

Cited by

  1. Combined treatment with auranofin and trametinib induces synergistic apoptosis in breast cancer cells vol.84, pp.2, 2019, https://doi.org/10.1080/15287394.2020.1835762