DOI QR코드

DOI QR Code

Hippocampal and Ventricular Volumes of Idiopathic Normal-pressure Hydrocephalus and the Cerebrospinal Fluid Tap Test

특발정상압수두증에서 해마 및 외측 뇌실의 부피와 뇌척수액배액검사

  • Kang, Kyunghun (Department of Neurology, School of Medicine, Kyungpook National University) ;
  • Han, Jaehwan (Department of Medical and Biological Engineering, Graduate School, Kyungpook National University) ;
  • Yoon, Uicheul (Department of Biomedical Engineering, Daegu Catholic University)
  • 강경훈 (경북대학교 의과대학 신경과학교실) ;
  • 한재환 (경북대학교 대학원 의용생체공학과) ;
  • 윤의철 (대구가톨릭대학교 의공학과)
  • Received : 2019.09.11
  • Accepted : 2019.10.11
  • Published : 2019.10.31

Abstract

We investigated differences in ventricular and hippocampal volumes between CSF tap test (CSFTT) responders and non-responders in idiopathic normal-pressure hydrocephalus (INPH) patients and compared these parameters in INPH patients with that of age- and gender-matched healthy controls. We also evaluated relationships between ventricular and hippocampal volumes and clinical profiles in INPH patients. We enrolled 48 patients with INPH and 29 healthy controls. Ventricular and hippocampal volumes were measured on MRI, including 3-dimensional volumetric images. INPH patients, when compared to healthy controls, had significantly larger ventricular and smaller hippocampal volumes. No difference in ventricular and hippocampal volumes was found between CSFTT responders and non-responders in INPH patients. And hippocampal volumes showed significant negative correlations with Clinical Dementia Rating Scale scores, INPH grading scale cognitive scores, Timed Up and Go Test scores, and Unified Parkinson's Disease Rating Scale motor scores in INPH patients. Volumetric assessment of ventricular and hippocampal regions may have no predictive value in differentiating between CSFTT responders and non-responders in INPH patients. Our findings may help us understand the potential pathophysiology of unique symptoms associated with INPH.

Keywords

References

  1. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4-16. https://doi.org/10.1093/neurosurgery/57.1.N4
  2. Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, et al. Guidelines for management of idiopathic normal pressure hydrocephalus. Neurologia medico-chirurgica. 2008;48 Suppl:S1-23. https://doi.org/10.2176/nmc.48.S1
  3. Toma AK, Holl E, Kitchen ND, Watkins LD. Evans' index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery. 2011;68(4):939-44. https://doi.org/10.1227/NEU.0b013e318208f5e0
  4. Kubo Y, Kazui H, Yoshida T, Kito Y, Kimura N, Tokunaga H, et al. Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus. Dementia and geriatric cognitive disorders. 2008;25(1):37-45. https://doi.org/10.1159/000111149
  5. Kilic K, Czorny A, Auque J, Berkman Z. Predicting the outcome of shunt surgery in normal pressure hydrocephalus. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2007;14(8):729-36. https://doi.org/10.1016/j.jocn.2006.03.028
  6. Ravdin LD, Katzen HL, Jackson AE, Tsakanikas D, Assuras S, Relkin NR. Features of gait most responsive to tap test in normal pressure hydrocephalus. Clinical neurology and neurosurgery. 2008;110(5):455-61. https://doi.org/10.1016/j.clineuro.2008.02.003
  7. Johnston B, Atkins MS, Mackiewich B, Anderson M. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE transactions on medical imaging. 1996;15(2):154-69. https://doi.org/10.1109/42.491417
  8. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991;82(4):239-59. https://doi.org/10.1007/BF00308809
  9. Fox NC, Schott JM. Imaging cerebral atrophy: normal ageing to Alzheimer's disease. Lancet. 2004;363(9406):392-4. https://doi.org/10.1016/S0140-6736(04)15441-X
  10. Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage. 2005;27(4):934-46. https://doi.org/10.1016/j.neuroimage.2005.05.015
  11. Cabral D, Beach TG, Vedders L, Sue LI, Jacobson S, Myers K, et al. Frequency of Alzheimer's disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2011;7(5):509-13. https://doi.org/10.1016/j.jalz.2010.12.008
  12. Hamilton R, Patel S, Lee EB, Jackson EM, Lopinto J, Arnold SE, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Annals of neurology. 2010;68(4):535-40. https://doi.org/10.1002/ana.22015
  13. Kang K, Yoon U, Choi W, Lee HW. Diffusion tensor imaging of idiopathic normal-pressure hydrocephalus and the cerebrospinal fluid tap test. Journal of the neurological sciences. 2016;364:90-6. https://doi.org/10.1016/j.jns.2016.02.067
  14. Park S, Yoon U. Automated Segmentation of the Lateral Ventricle Based on Graph Cuts Algorithm and Morphological Operations. Journal of Biomedical Engineering Research. 2017;38(2):82-8. https://doi.org/10.9718/JBER.2017.38.2.82
  15. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE transactions on medical imaging. 1998;17(1):87-97. https://doi.org/10.1109/42.668698
  16. Zijdenbos AP, Forghani R, Evans AC. Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE transactions on medical imaging. 2002;21(10):1280-91. https://doi.org/10.1109/TMI.2002.806283
  17. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of computer assisted tomography. 1994;18(2):192-205. https://doi.org/10.1097/00004728-199403000-00005
  18. Kwak K, Yoon U, Lee DK, Kim GH, Seo SW, Na DL, et al. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening. Magnetic resonance imaging. 2013;31(7):1190-6. https://doi.org/10.1016/j.mri.2013.04.008
  19. Firbank MJ, Barber R, Burton EJ, O'Brien JT. Validation of a fully automated hippocampal segmentation method on patients with dementia. Human brain mapping. 2008;29(12):1442-9. https://doi.org/10.1002/hbm.20480
  20. Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on pattern analysis and machine intelligence. 2004;26(9):1124-37. https://doi.org/10.1109/TPAMI.2004.60
  21. Lotjonen J, Wolz R, Koikkalainen J, Julkunen V, Thurfjell L, Lundqvist R, et al. Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease. NeuroImage. 2011;56(1):185-96. https://doi.org/10.1016/j.neuroimage.2011.01.062
  22. van der Lijn F, den Heijer T, Breteler MM, Niessen WJ. Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage. 2008;43(4):708-20. https://doi.org/10.1016/j.neuroimage.2008.07.058
  23. Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A, Lotjonen J, et al. Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI. NeuroImage. 2010;52(1):109-18. https://doi.org/10.1016/j.neuroimage.2010.04.006
  24. Savolainen S, Laakso MP, Paljarvi L, Alafuzoff I, Hurskainen H, Partanen K, et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer's disease confirmed by pathologic analysis. AJNR American journal of neuroradiology. 2000;21(2):409-14.
  25. Ishikawa M, Oowaki H, Matsumoto A, Suzuki T, Furuse M, Nishida N. Clinical significance of cerebrospinal fluid tap test and magnetic resonance imaging/computed tomography findings of tight high convexity in patients with possible idiopathic normal pressure hydrocephalus. Neurologia medicochirurgica. 2010;50(2):119-23; disucussion 23.
  26. Kang K, Yoon U, Lee JM, Lee HW. Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test. Journal of the neurological sciences. 2013;334(1-2):55-62. https://doi.org/10.1016/j.jns.2013.07.014
  27. Lee WJ, Wang SJ, Hsu LC, Lirng JF, Wu CH, Fuh JL. Brain MRI as a predictor of CSF tap test response in patients with idiopathic normal pressure hydrocephalus. Journal of neurology. 2010;257(10):1675-81. https://doi.org/10.1007/s00415-010-5602-8
  28. Kohler S. Quantitative characterization of verbal learning deficits in patients with Alzheimer's disease. Journal of clinical and experimental neuropsychology. 1994;16(5):749-53. https://doi.org/10.1080/01688639408402688
  29. Laakso MP, Soininen H, Partanen K, Helkala EL, Hartikainen P, Vainio P, et al. Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer's disease: correlation with memory functions. Journal of neural transmission Parkinson's disease and dementia section. 1995;9(1):73-86. https://doi.org/10.1007/BF02252964
  30. Thompson PD, Nutt JG. Higher level gait disorders. Journal of neural transmission. 2007;114(10):1305-7. https://doi.org/10.1007/s00702-007-0749-x
  31. Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations during motor imagery of locomotor-related tasks: a PET study. Human brain mapping. 2003;19(1):47-62. https://doi.org/10.1002/hbm.10103
  32. Derflinger S, Sorg C, Gaser C, Myers N, Arsic M, Kurz A, et al. Grey-matter atrophy in Alzheimer's disease is asymmetric but not lateralized. Journal of Alzheimer's disease : JAD. 2011;25(2):347-57. https://doi.org/10.3233/JAD-2011-110041
  33. Thompson. PM, Hayashi. KM, Zubicaray. Gd, Jank. AL, Rose. SE, Semple. J, et al. Dynamics of Gray Matter Loss in Alzheimer's Disease. The Journal of Neuroscience. 2003;23(3):994-1005. https://doi.org/10.1523/JNEUROSCI.23-03-00994.2003