
Commun. Korean Math. Soc. 34 (2019), No. 4, pp. 1353–1364

https://doi.org/10.4134/CKMS.c180350

pISSN: 1225-1763 / eISSN: 2234-3024

MODIFIED LAGRANGE FUNCTIONAL FOR

SOLVING ELASTIC PROBLEM WITH A CRACK IN

CONTINUUM MECHANICS

Robert V. Namm, Georgiy I. Tsoy, and Gyungsoo Woo

Abstract. Modified Lagrange functional for solving an elastic problem
with a crack is considered. Two formulations of a crack problem are

investigated. The first formulation concerns a problem where a crack ex-

tending to the outer boundary of the domain. In the second formulation,
we consider a problem with an internal crack. Duality ratio is established

for initial and dual problem in both cases.

1. Introduction

The classical statement of an equilibrium problem of an elastic body where
a crack is to assume that on the crack faces zero stress conditions are given
[2,6]. These conditions do not exclude the possibility of penetration of the crack
faces into each other, which is unnatural in terms of continuum mechanics. In
recent papers on the crack theory, the models with boundary conditions such
as inequalities on the crack faces are considered [3,8,9]. These models provide a
mutual non-penetration of the crack faces and can be formulated as variational
problems of minimization of a convex functional on a closed convex subset of the
initial Hilbert space or as variational inequalities. It is important to construct
efficient approximate methods for solving such kind of variational inequalities.
In the present paper, to solve a plain elasticity crack problem with mutual
non-penetration between the crack faces we use a duality scheme based on
modified Lagrange functionals. As a rule, there are two main statements of the
problem with a crack. The statement of the problem with an internal crack and
problem with a crack extending to the outer boundary. Modified Lagrangian
functionals for a problem with an internal crack are studied in detail in [7]. In
the present paper, the method of solving the problem with a crack extending
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to the outer boundary is investigated. With the similarity of the theorems,
their justifications are carried out using various functional spaces. Thus, for
these two formulations of the problem with a crack, it is possible to construct
a general duality scheme based on the modified Lagrange functionals.

2. Elastic problem with a crack extending to the outward boundary
of the domain

Let Ω ⊂ R2 be a bounded domain with a regular boundary Γ, and let
γ ⊂ Ω be a cut(crack) with edge lying on the outward boundary. Assume
that Γ = Γ0

⋃
Γ1, where Γ0, Γ1 are nonempty open disjoint subsets of Γ and

Γ1 = Γ+
1

⋃
Γ−1
⋃

Γ∗1 (see Fig. 1).

-
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Figure 1. Elastic body with an external crack.

Assume that the boundary is smooth except finite points. We assume that γ
is a smooth curve, without self-intersections, leaving one endpoint of γ under a
nonzero angle to Γ. This assumption is important to study the duality scheme
based on the modified Lagrange functional. Denote Ωγ = Ω \ γ, where γ =
γ ∪{a}∪{b} and a, b are the crack vertices. Let ν be the vector of unit normal
on γ. In this case on the crack γ, denote the positive (upper) face by γ+ and
the negative (lower) face γ−. Consider the following elasticity theory crack
problem.

For the displacement vector v = (v1, v2), define the deformation tensor

εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, i, j = 1, 2,

and the stress tensor

σij(v) = cijkmεkm(v),

where cijkm = cjimk = ckmij , i, j, k,m = 1, 2, and summation is implied over
the repeated indices.

Let us specify vector-functions of the body and surface forces f = (f1, f2)
and p = (p1, p2), respectively. The boundary value problem is formulated as
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follows [2, 7]:

(1)

−∂σij
∂xj

= fi in Ωγ , i = 1, 2,

u = 0 on Γ0,

σijnj = pi on Γ1, i = 1, 2,

where n = (n1, n2) is the unit outward normal vector to Γ.
The following conditions are set on γ:

(2)
[uν ] ≥ 0, [σν(u)] = 0, σν(u)[uν ] = 0 on γ,

σν(u) ≤ 0, στ (u) = 0 on γ±.

Here uν = uν, [uν ] = u+
ν − u−ν , σν(u) = σij(u)νiνj , [σν(u)] = σ+

ν (u) − σ−ν (u),
στ (u) = σ(u)− σνν, where σ(u) = (σ1(u), σ2(u)), σi(u) = σij(u)νj , i = 1, 2.

We observe a variational problem for a domain with a crack corresponding
to the boundary value problem (1), (2). As mentioned in [2], we introduce the
set of admissible displacements

K =
{
v ∈ [H1(Ωγ)]2 : [vν ] ≥ 0 on γ, v = 0 on Γ0

}
,

where, as before, [vν ] = v+
ν − v−ν is a jump of the function vν = vν on γ,

v±ν ∈ H1/2(γ) (see [2, p. 12]). The norm in the space H1/2(γ) is defined as

‖vν‖2H1/2(γ) = ‖vν‖2L2(γ) +

∫
γ

∫
γ

|vν(x)− vν(y)|2

|x− y|2
dxdy.

The boundary value problem (1), (2) corresponds to the following variational
problem [2,7]:

(3)

J(v) =
1

2
a(v, v)−

∫
Ωγ

fivi dΩ−
∫

Γ1

pivi dΓ→ min,

v ∈ K,

where a(u, v) =
∫

Ωγ
cijpmεpm(u)εij(v) dΩ , f ∈ [L2(Ωγ)]2, p ∈ [L2(Γ1)]2.

The problem (3) is equivalent to variational inequality [1]

(4) u ∈ K : a(u, v − u)−
∫

Ωγ

fi(vi − ui) dΩ−
∫

Γ1

pi(vi − ui) dΓ ≥ 0 ∀v ∈ K.

3. Elastic problem with an internal crack

Let Ω be the same domain as in Section 2. Crack γ is an internal crack, so
we assuming that the end points a, b are crack vertices that do not reach the
outer boundary Γ (see Fig. 2).

The boundary statement of the problem with an internal crack looks just like
for the problem of Section 2. The variational problem (3) and the variational
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Figure 2. Elastic body with an internal crack.

inequality (4) remain in force. However, in order to justify the applicability of
the duality method, here we need an additional function space

H
1/2
00 (γ) =

{
w ∈ H1/2(γ) :

w
√
ρ
∈ L2(γ)

}
with the norm

‖w‖2
H

1/2
00 (γ)

= ‖w‖2H1/2(γ) +

∥∥∥∥ w√ρ
∥∥∥∥2

L2(γ)

,

where ρ(x) = dist(x, ∂γ) (see [7]).

4. General duality scheme

To solve the crack problems introduced in Sections 2 and 3 we construct a
general duality scheme based on a modified Lagrange functional. At the same
time, all necessary substantiations will be carried out for the problem of Section
2 only. The same substantiations for problem of Section 3 one can find in [7].

Define the space

W =
{
v ∈ [H1(Ωγ)]2 : v = 0 on Γ0

}
.

For an arbitrary m ∈ L2(γ), construct the set

Km = {v ∈W : −[vν ] ≤ m on γ} .
It is easy to show that Km is a closed convex set in the H1(Ωγ) norm.

On the space L2, we define a sensitivity functional

χ(m) =

{
inf

v∈Km
J(v), if Km 6= ∅,

+∞, otherwise.

Since the crack leaves at point b on the outer boundary Γ under a nonzero
angle to Γ, then the Korn inequality is fulfilled [2]∫

Ωγ

εij(v)εij(v) dΩ ≥ c‖v‖2H1
Ωγ

∀ v ∈W,
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where c > 0 is a constant. The Korn inequality implies the property of strong
convexity (and hence coercivity) of the functional J(v) on the space W . There-
fore the problem inf

v∈Km
J(v) under the condition Km 6= ∅ is solvable. If the

function m ∈ L2(γ) \H1/2(γ), the set Km can be empty [7, 12].
The functional χ(m) is a proper convex functional on L2(γ), but its effective

domain domχ = {m ∈ L2(γ) : χ(m) < +∞} does not coincide with L2(γ).
Also note the domχ is a convex but not closed in L2(γ), and in our case
domχ = L2(γ).

On the space W × L2(γ)× L2(γ), we define the functional

Q(v, l,m) =

J(v) +

∫
γ

lmdΓ +
r

2

∫
γ

m2dΓ, if − [vν ] ≤ m a.e. on γ,

+∞, otherwise.

and a modified Lagrange functional M(v, l) on the space W × L2(γ):

M(v, l) = inf
m∈L2(γ)

Q(v, l,m) = J(v) +
1

2r

∫
γ

{[
(l − r[vν ])+

]2 − l2} dΓ,

where (l − r[vν ])+ ≡ max{0, l − r[vν ]}, r > 0 is a constant.
A modified dual functional is defined as follows

M(l) = inf
v∈W

M(v, l) = inf
v∈W

{
J(v) +

1

2r

∫
γ

{[
(l − r[vν ])+

]2 − l2} dΓ

}
.

Since inf
v∈W

inf
m∈L2(γ)

Q(v, l,m) = inf
m∈L2(γ)

inf
v∈W

Q(v, l,m) for M(l), we also have

the following representation [12]:

M(l) = inf
m∈L2(γ

{
χ(m) +

∫
γ

lmdΓ +
r

2

∫
γ

m2dΓ

}
.

It is easy to see that the following estimate is valid for any l ∈ L2(γ):

(5) M(l) ≤ χ(0) = inf
v∈K

J(v).

For the functional M(l), we define a dual problem:

(6)

{
M(l)− sup,

l ∈ L2(γ).

For a problem with a crack it is natural to assume only [H1(Ωγ)]2 regularity
of the solution. In this case, the dual problem (6) may be unsolvable. We
consider a dual method for solving a problem with a crack, extending to the
outer boundary, in which the solvability of the dual problem (6) is not assumed
in advance. A similar study of the dual method for solving an elastic problem
with an internal crack was performed in [7].

Let us investigate the sensitivity functional χ(m) and the corresponding dual
functional M(l). We show that the sensitivity functional χ(m) is weakly lower
semicontinuous on L2(γ). Since χ(m) is a convex functional, it is sufficient to
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prove that epigraph of the functional is closed. Closure of the epigraph follows
from the following two lemmas.

Lemma 4.1. Let m ∈ L2(γ) do not belong to domχ. Then for any sequence
{mi} ⊂ domχ such that lim

i→∞
‖mi −m‖L2(γ) = 0 we have a limit equality

lim
i→∞

χ(mi) = +∞.

Proof. For a function m /∈ domχ, we consider an arbitrary sequence {mi} ⊂
domχ such that lim

i→∞
‖mi −m‖L2(γ) = 0. Since Kmi 6= ∅ and the functional

J(v) is coercive on W , there exists a unique element vi = arg min
v∈Kmi

J(v),

(i = 1, 2, . . .). Let us show that lim
i→∞

∥∥vi∥∥
W

= +∞.

Assume the contrary, that is, let the sequence {vi} have a bounded sub-
sequence {vij},

∥∥vij∥∥
W
≤ c for all ij , where c > 0 is a constant. It follows

from the trace theorem that
∥∥∥[v

ij
ν ]
∥∥∥
H1/2(γ)

≤ c1, where c1 > 0 is a constant [2].

Then {[vijν ]} is a compact subsequence in L2(γ). Let t ∈ H1/2(γ) be a weak
limit point of this sequence. Without loss of generality, the number t can be

considered a weak limit {[vijν ]} in H1/2(γ). Then {[vijν ]} converges to t in the

norm in L2(γ). Since −[v
ij
ν ] ≤ mi, we have −t ≤ m on γ. Hence, Km 6= ∅

or m ∈ domχ. This contradiction shows that lim
i→∞

∥∥vi∥∥
W

= +∞. Since the

functional J(v) is coercive on W , we have lim
i→∞

χ(mi) = lim
i→∞

J(vi) = +∞. �

Lemma 4.2. Let m ∈ L2(γ) belong to domχ. Then for any sequence {mi} ⊂
domχ converging to m in L2(γ), the following inequality holds

lim
i→∞

χ(mi) ≥ χ(m).

Proof. Let {mi} ⊂ domχ and lim
i→∞

‖mi −m‖L2(γ) = 0, where m ∈ domχ.

From the sequence {mi}, we take a subsequence {mij} for which

lim
i→∞

χ(mij ) = lim
i→∞

χ(mi).

Consider a subsequence {vij}, where vij = arg min
v∈Kmij

J(v). The sequence {vij}

is bounded in W (otherwise lim
i→∞

χ(mij ) = +∞ and the required inequality is

proved). Denote Γ̃ = Γ ∪ γ+ ∪ γ− and let [H1/2(Γ̃)]2 be the space of traces

of functions from the space [H1(Ωγ)]2 to Γ̃. Let [H1/2(Γ)]2 be the space of

functions that are the restrictions of functions from [H1/2(Γ̃)]2 to Γ. Since

W ⊂ [H1(Ωγ)]2 ⊂ [H1/2(Γ̃)]2, we have ‖vij‖[H1/2(Γ)]2 ≤ c, where c > 0 is a

constant. In addition, {vij} is a compact sequence in L2(Γ). Let v̂ ∈ [H1/2(Γ)]2

be a weak limit point of this sequence. Without loss of generality v̂ may
be considered a weak limit {vij}. Then {vij} converges to v̂ in L2(Γ). It
follows from the trace theorem [2] that the sequence {[vij ]} is weakly compact
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in H1/2(γ). Let t ∈ H1/2(γ) be a weak limit point of this sequence. Without
loss of generality {[vij ]} can be considered a weakly converging sequence, that

is, t is a weak limit of {[vij ]} in H1/2(γ).

Since the space H1/2(γ) is compactly embedded into L2(γ) and L2(γ) is
embedded into H−1/2(γ), [vij ] converges to t in the norm L2(γ). Here H−1/2(γ)

is the space that dual to H1/2(γ). From the convergence mij to m in L2(γ),
[vij ] to t in L2(γ), and condition −[vij ] ≤ mij , we obtain −t ≤ m on γ.

Let us denote t̃ = arg min
v∈Wt

J(v), where Wt = {v ∈ W : [vν ] = t on γ, v = v̂

on Γ1}. We have

J(vij )− J(t̃) = a(t̃, vij − t̃)−
∫

Ωγ

fs(v
ij
s − t̃s)dΩ +

1

2
a(vij − t̃, vij − t̃)

−
∫

Γ1

ps(v
ij
s − v̂s)dΓ

= 〈µ1, v
ij − v̂〉+ 〈µ2, [v

ij
ν ]− t〉 −

∫
Γ1

ps(v
ij
s − v̂s)dΓ

+
1

2
a(vij − t̃, vij − t̃),

where µ1 ∈ [H−1/2(Γ)]2, µ2 ∈ H−1/2(γ). Here

〈µ1, v
ij − v̂〉+ 〈µ2, [v

ij
ν ]− t〉 = a(t̃, vij − t̃)−

∫
Ωγ

fs(v
ij
s − t̃s)dΩ

and µ1 + µ2 ∈ ([H1/2(Γ)]2 ×H1/2(γ))∗, where ([H1/2(Γ)]2 ×H1/2(γ))∗ is the
space that is dual to [H1/2(Γ)]2 ×H1/2(γ).

Since {vij} weakly converges to v̂ in [H1/2(Γ)]2 and {[vij ]} weakly converges

to t in H1/2(γ), owing to the uniqueness of the weak limits we have

lim
j→∞
〈µ1, v

ij − v̂〉+ lim
j→∞
〈µ2, [v

ij
ν ]− t〉 = 0.

Therefore, the following estimate is valid:

lim
j→∞

χ(mij ) = lim
j→∞

J(vij ) ≥ J(t̃) ≥ χ(m)

and, hence,

lim
i→∞

χ(mi) ≥ χ(m). �

As was noted above, from the lemmas proved above, it follows the weak
lower semicontinuity of a convex functional χ(m) or the closure of its epigraph.

For an arbitrary fixed l ∈ L2(γ), consider the functional

Fl(m) = χ(m) +

∫
γ

lmdΓ +
r

2

∫
γ

m2dΓ , r > 0− const.

It is easy to see that Fl(m) is a functional that is lower semicontinuous on
L2(γ). Since epiχ is a convex closed set in L2(γ) × R, R = (−∞,+∞), then
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according to the Mazur separability theorem [4], there exist α ∈ L2(γ) and
β ∈ R such that

χ(m) +

∫
γ

αmdΓ + β ≥ 0 ∀ m ∈ domχ.

Hence, for the functional Fl(m) the following lower estimate holds:

Fl(m) ≥ −
∫
γ

αmdΓ +

∫
γ

lmdΓ +
r

2

∫
γ

m2dΓ − β ≥ 0 ∀ m ∈ L2(γ).

Therefore, Fl(m) → +∞ as ‖m‖L2(γ) → +∞, that is, Fl(m) is coercive in
L2(γ).

It follows from the weak semicontinuity and coercivity of Fl(m) that for any
l ∈ L2(γ) there exists an element m(l) ∈ L2(γ) such that

m(l) = arg min
m∈L2(γ)

Fl(m).

It follows from the strong convexity of Fl(m) on domχ [10] that for any l ∈
L2(γ) the element m(l) is unique.

We formulate for the dual functional M(l) some characteristic statements
that can be proved similarly to Theorem 24 in [13].

Theorem 4.3. The dual functional M(l) is continuous in L2(γ).

Theorem 4.4. The dual functional M(l) is Gateaux differentiable in L2(γ)
and its derivative 5M(l) satisfies a Lipschitz condition with a constant 1

r , that
is, the following inequality holds:

‖ 5M(l
′
)−5M(l

′′
)‖L2(γ) ≤

1

r
‖l
′
− l
′′
‖L2(γ) ∀ l

′
, l
′′
∈ L2(γ).

It can be shown that 5M(l) = m(l) = max{−[uν ],− l
r} ∀ l ∈ L2(γ) [11].

To solve the dual problem (6), consider a gradient method [7]

(7) lk+1 = lk + θkm(lk), k = 1, 2, . . . ,

with any initial value l0 ∈ L2(γ), θk ∈ [τ, 2r − τ ], τ ∈ (0, r].

Theorem 4.5. For the sequence {lk} constructed by the method (7) we have a
limit equality

lim
k→∞

‖m(lk)‖L2(γ) = 0.

The gradient method (7) generates the following algorithm of a Uzawa-type
method for solving the problem (3) [7]. At the initial step, k = 0, specify
an arbitrary function l0 ∈ L2(γ) and for every k = 0, 1, 2, . . . subsequently
calculate:

(8) (i) uk+1 = arg min
v∈W

{
J(v) +

1

2r

∫
γ

{[
(lk − r[vν ])+

]2 − (lk)2
}
dΓ

}
;

(9) (ii) lk+1 = lk + θk max{−[uk+1
ν ],− l

k

r
}, θk ∈ [τ, 2r − τ ], τ ∈ (0, r].
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Theorem 4.6. The following duality relation holds [7]

sup
l∈L2(γ)

M(l) = inf
v∈K

J(v).

Note that when the dual problem (6) is solvable, it can be proved that the
sequence {lk} is bounded in L2(γ) [7, 14]. According to Theorem 4.5, this
means that the following equality is valid:

lim
k→∞

∫
γ

lkm(lk)dΓ = 0.

Hence, the method (8), (9) converges for the functional of the (3), that is,

lim
k→∞

χ(m(lk)) = lim
k→∞

J(uk+1) = J(u),

where u is the solution to the problem (3).

5. Numerical experiment

The domain Ω is taken as a unit square. Consider two cracks:

γ1 = {(x, y) : 0.75 ≤ x ≤ 1, y =
√

0.31252 − (x− 0.75)2 + 0.1875},
γ2 = {(x, y) : 0.2 ≤ x ≤ 0.8, y = 0.5},

where γ1 is a crack, leaving right endpoint on Γ under a nonzero angle, γ2 is
a crack inside the body. To find a solution to the problem (8), we use a finite
element method.

We introduce the following notation: h - edge length on γ, n - number of
all triangulation nodes, nγ - number of triangulation nodes on γ, Wh is the
linear shell of the basis functions ϕi(x, y), uh = (uh1 , u

h
2 ) is the piecewise linear

approximation of the exact solution u:

(10) uh1 (x, y) =

n∑
j=1

tjϕj(x, y), uh2 (x, y) =

2n∑
j=n+1

tjϕj−n(x, y), tj ∈ R.

Since Ω is a polygon, the embedding Wh ⊂ W is guaranteed. Thus, the
problem (8) is replaced by the finite element problem

(11) uk+1 = arg min
v∈Wh

{
J(v) +

1

2r

∫
γ

{[
(lk − r[vν ])+

]2 − (lk)2
}
dΓ

}
.

We approximate the boundary integral of γ using the trapezium quadrature
rule. Let t = (t1, t2, . . . , tn, tn+1, . . . , t2n), then the minimization problem (11)
is reduced to finding the optimal values of ti. For this, we use generalized
Newton method [5].

The iterations of generalized Newton method terminate when the following
criterion is met:

‖tm+1 − tm‖∞ < εt, εt = 10−12.

The stop criterion for the Uzawa method has the following form:

‖αk+1 − αk‖∞ < εα, εα = 10−8,
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where αk = (αk1 , α
k
2 , . . . , α

k
nγ ) - approximate value of the dual variable lk.

Let us present the results of numerically solving the problem. The parameter
values are as follows: f = (f1, f2) = (0, 0), the right side surface force p1|Γ∗1 =

−27 ·g(y) MPa, p2|Γ∗1 = 0 MPa, on the upper side p1|Γ+
1

= 0 MPa, p2|Γ+
1

= −1

MPa and on the lower side p1|Γ−1 = 0 MPa, p2|Γ−1 = 1 MPa, Young’s elasticity

modulus E = 73000 MPa, the Poisson coefficient µ = 0.34, the constant r =
1010.

The results of the numerical solution with crack γ1 are presented graphically
in Figure 3(a), 3(b). Here g(y) = 1 and h = 0.003. The graphs show that the
jump [uν ] ≥ 0 on the crack, so there is no mutual penetration between the
crack faces into each other. In addition, it can be seen from Figure 3(b) that
the value of the dual variable is greater than zero at points where crack faces
are stuck together. This indicates the presence of a normal stress in these
nodes.
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(a) Jump of the function uν
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(b) Value of the dual variable l

Figure 3. Results with crack γ1

Figure 4(a), 4(b) show solution of the problem with crack γ2, where g(y) =
1 − |2y − 1|, (0 ≤ y ≤ 1) and h = 0.005. As in the previous example, there is
no mutual penetration between the crack faces.

A small number of steps (ii) provides fast convergence of the Uzawa method
by dual variable l. In the first example, only 5 iterations by dual variable are
performed. The number of iterations for the generalized Newton method at step
(i) also turned out to be relatively small. On the first step of the Uzawa method,
9 iterations by primal variable are executed, and on the next steps only 2
iterations. Similar for the second example with inner crack: 4 iterations by dual
variable, 8 iterations by primal variable on first step (i). Thus, the numerical
calculations confirm that modified Lagrange functionals make it possible to
efficiently solve mathematical models with nonlinear boundary conditions in
the form of inequalities.
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Figure 4. Results with crack γ2
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