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A COMBINATORIAL APPROACH TO ASYMPTOTIC

BEHAVIOR OF KIRILLOV MODEL FOR GL2

Yusuf Danisman

Abstract. We find the asymptotic behavior of Kirillov model for irre-

ducible induced representations of GL2 by using combinatorial methods.

1. Introduction

Let F be a non-archimedean local field. L-factors with ε-factors are crucial
to determine the surjective, finite to one map in local Langlands Conjecture
uniquely. Langlands has conjectured that there is a close connection between
the irreducible admissible representations of a reductive group G(F ) and the
representations of the Weil-Deligne group in the dual group LG(C). The Weil-
Deligne group is roughly product of a subgroup of Gal(F̄ /F ) and SL2(C) and
LG(C) is derived from the root system of G(F ).

The local Langlands conjecture assigns an L and ε-factor to each irreducible
representation of G(F ) namely L and ε-factor of the corresponding represen-
tation of Weil-Delign group defined by Deligne and Langlands [7, 10]. Instead
of this assignment, to get more information on this correspondence it is better
to define these factors of G(F ) by attaching an integral representation which
would compute these local factors. One way to do this is, as in GLn(F ) case
as follows: for generic representations induced from a parabolic subgroup an
integral representation is defined by using Whittaker model; then the defini-
tion is extended to quotients, i.e., nongeneric representations by Langlands
classification [9].

Let us first briefly explain the integral representation forGL2(F ). Let (π, Vπ)
be an infinite dimensional irreducible representation of GL2(F ) and ψ be a
nontrivial additive character of F . A Whittaker functional on V is a linear
functional L such that

L : V → C and L(π

[(
1 n
0 1

)]
v) = ψ(n)L(v)
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for all n ∈ F. The space W = {Wv(g) = L(π(g)v) : g ∈ GL2(F ), v ∈ V } is
called the Whittaker Model and the space{

φv : φv(x) = Wv

[(
x 0
0 1

)]
: Wv ∈W, x ∈ F×

}
is called the Kirillov model of (π, Vπ).

Let v ∈ Vπ and φv be an element of the Kirillov model. We associate an
integral

Z(s, φv) =

∫
F×

φv(x)|x|s−1/2 d×y,

where d×y denotes the Haar measure on F×. By Proposition 4.7.5 of [1] this
integral is convergent for Re(s) large enough and has a meromorphic con-
tinuation to all s. Also there exists a polynomial pφv

such that Z(s, φv) =
pφv

(q−s)L(s, π), where L(s, π) is called the local L-factor and it is an element
of C[qs, q−s].

To compute L(s, π) one needs to find the asymptotic behavior of φv. In [1],
this is done by

1) finding the constituents of the Jacquet module (Theorem 4.5.4 of [1]).
2) determining the splitting type of the Jacquet module (Theorem 4.5.4

of [1]).
3) finding the asymptotic behavior of the Kirillov model up to constants

by using (1) and (2) (Proposition 4.7.4 of [1]).
4) determining the space {v ∈ Vπ : φv = 0} (Proposition 4.4.7).
5) determining the space {v ∈ Vπ : φv ∈ C∞c (F×)} (Theorem 4.7.1).
6) finding the asymptotic behavior of the Kirillov model explicitly by using

all the information above from 1 to 5 (Theorem 4.7.2 [1]).

In this paper, we show that behaviour of Krillov model can be found without
full knowledge of the structure of the Jacquet module. By induction our results
can be generalized for the higher rank cases. This can be done without the
second step above and using combinatorial methods. The results we obtain are
not new; they can be found in Proposition 4.7.4 of [1]. The general formula for
induced representation of an arbitrary quasi-split group is given in the equation
(3.4.2) of [2]. For the matrix group GSp4(F ), the asymptotic behaviour of
Bessel model is given but not proved in [11] and proved in [3], [4], [5] and [6]
in a similar way for non-split case. However, we have found that our method
is very simple.

By Theorem 4.5.4 of [1], the constituents of the Jacquet module, which has
length two are known. Without determining, which constituent is subrepre-
sentation or subquotient we will find the asymptotic behavior of the Kirillov
model. Our method can be easily generalized to the representations of GLn(F )
and GSp4(F ), even for the Bessel model of the latter one because, considering
one more character in a higher rank case, results in two cases, depending on
whether the new character already exists or not. By induction, these two cases
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can be handled. In contrary, there is no simple induction argument to find the
full structure of the Jacquet module in a higher rank case. In such a case, the
methods in Section 6.3 of the unpublished book Introduction to the Theory of
Admissible Representations of p-adic Reductive Groups by William Casselman
should be applied as in Section 3.2 of [4].

2. Definitions and preliminaries

In this paper, F will always denote non-archimedean local field of odd char-
acteristic, O its ring of integers, vF its valuation, P the unique maximal prime
ideal of O and $ a fixed generator of P. Let q be the cardinality of the residue
field of F .

Let

B =

{(
a b
0 d

)
: a, d ∈ F x, b ∈ F

}
be the Borel subgroup of GL2(F ),

T =

{(
a 0
0 d

)
: a, d ∈ F x

}
be the split torus of GL2(F ) and

N =

{(
1 n
0 1

)
: n ∈ F

}
be the unipotent subgroup of GL2(F ).

Let χ1, χ2 be characters of F× and V be the space of functions f : GL2(F )→
C such that

f

[(
a b
0 d

)
g

]
=
∣∣∣a
d

∣∣∣1/2 χ1(a)χ2(d)f(g),

where g ∈ GL2(F ) and
(
a b
0 d

)
∈ B, and invariant under some open compact

subgroup of GL2(F ).
We can define an action of GL2(F ) on V by right translation and denote it

by π. Let VN = span{π(n)v − v : n ∈ N, v ∈ V }. VN is invariant under T and
J(V ) = V/VN is a T module. Let πN be the action of T on J(V ). (πN , J(V ))
is a smooth representation and J(V ) is called the Jacquet module of V .

By Theorem 4.5.4 of [1], constituents of J(V ) are the characters δ1/2χ and

δ1/2χ′ of T , where δ [( a 0
0 d )] =

∣∣a
d

∣∣1/2,

χ

[(
a 0
0 d

)]
= χ1(a)χ2(d) and χ′

[(
a 0
0 d

)]
= χ1(d)χ2(a).

3. Asymptotic behavior of Kirillov model

By Theorem 4.5.4 of [1], let U1 := δ1/2χ and U2 := δ1/2χ′ be the constituents
of J(V ). By Frobenius Theorem δ1/2χ′ is a subrepresentation and δ1/2χ is a
subquotient, however we will not need that information. We will only use that
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U1 and U2 are the only constituents of (semisimplification) J(V ). Hence we
have

(1) 0→ U1 → J(V )→ U2 → 0

or

(2) 0→ U2 → J(V )→ U1 → 0.

For v ∈ V , let v be the image of v in J(V ), v be the image of v in J(V )/U1
∼=

U2 and πN be the representation on J(V )/U1. Also let h(x) := ( x 1 ) . Hence
by exact equation (1) we have

πN [h(x)]v = δ1/2χ′[h(x)]v

and

πN [h(x)]v − δ1/2χ′[h(x)]v ∈ U1

so

πN [h(x)]{πN [h(x)]v− δ1/2χ′[h(x)]v} = δ1/2χ[h(x)]{πN [h(x)]v− δ1/2χ′[h(x)]v}

and we get

πN [h(x2)]v − |x|1/2χ2(x)πN [h(x)]v = |x|1/2χ1(x)πN [h(x)]v − |x|χ1(x)χ2(x)v.

Hence

(3) π[h(x2)]v − |x|1/2[χ1(x) + χ2(x)]π[h(x)]v + |x|χ1(x)χ2(x)v ∈ VN .

If we follow the same steps above for the exact equation (2) we will also
reach to the equation (3). This is the reason why we do not need to know
which constituent is the subrepresentation.

As mentioned in the introduction φv is an element of the Kirillov model of
(π, Vπ). By equation (3) and a similar proof to that of Proposition 4.7.4 of [1]
we have

φπ[h(x2)]v−|x|1/2[χ1(x)+χ2(x)]π[h(x)]v+|x|χ1(x)χ2(x)v(y) = 0

for x ∈ {$O×, $2O×} and |y| ≤ q−m for some m ∈ Z depend on v.
Above equation is also equivalent to

(4) φv(x
2y)− |x|1/2[χ1(x) + χ2(x)]φv(xy) + |x|χ1(x)χ2(x)φv(y) = 0.

If x = $, y = $ku for k ≥ m and u ∈ O×, then

φv($
k+2u) = q−1/2[χ1($) + χ2($)]φv($

k+1u)− q−1χ1($)χ2($)φv($
ku).

If we fix u and treat φv($
ku) as a sequence of k, then the equation above

is a linear homogeneous recurrence relation with constant coefficients. Hence
by Section 2.1 of [8], to find φv for fixed u we need to look at the roots of the
equation

T 2 − q−1/2[χ1($) + χ2($)]T + q−1χ1($)χ2($) = 0,
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which are q−1/2χ1($) and q−1/2χ2($). For simplicity let A := q−1/2χ1($)
and B := q−1/2χ2($). Now there are two cases: If χ1($) 6= χ2($), then we
have two different roots and

(5) φv($
ku) = Cv1 (u)Ak + Cv2 (u)Bk.

If χ1($) = χ2($), then we have a double root and

(6) φv($
ku) = [Cv1 (u) + Cv2 (u)k]Ak,

where Cv1 (u) and Cv2 (u) are constants depend on u and v. Now we will consider
these two cases separately.

3.1. Case: χ1($) 6= χ2($)

In this section, we will prove the following theorem which is a refinement of
the equation (5) and the main result of this paper in this case.

Theorem 3.1. If χ1($) 6= χ2($), then Cv1 (u) = Cv1χ1(u) and Cv2 (u) =
Cv2χ2(u) where Cv1 and Cv2 are constants depend only on v. Hence

φv(x) = Cv1 |x|1/2χ1(x) + Cv2 |x|1/2χ2(x)

for small enough |x|.

Proof. Since the proofs are similar, we will prove the theorem only for Cv1 (u).
Lemma 3.2 provides the general behaviour of Cv1 and Cv1 (u) = Cv1χ1(u) will be
proved case by case as in Table 1.

Table 1. Case by case proof of Theorem 3.1

Lemma 3.2 general behaviour of Cv1
Prop. 3.3 χ1($) 6= ±χ2($)
Prop. 3.4 χ1($) = −χ2($) and χ1(u) 6= χ2(u)
Prop. 3.5(i) χ1($) = −χ2($), χ1(u) = χ2(u) and ∃α ∈ O× s.t. χ1(α) 6= ±χ2(α)
Prop. 3.5(ii) χ1($) = −χ2($), χ1(u) = χ2(u) and ∃α ∈ O× s.t. χ1(α) = −χ2(α)
Prop. 3.6 χ1($) = −χ2($) and χ1|Ox = χ2|Ox

�

The lemma and propositions mentioned in Table 1 will be proved in the rest
of this case.

Lemma 3.2. If χ1($) 6= χ2($), then for u0, u1 ∈ O× we have

Cv1 (u20u1) =

[
χ1($u0) + χ2($u0)

χ1($)

]
Cv1 (u0u1)−

[
χ1(u0)χ2($u0)

χ1($)

]
Cv1 (u1).

Proof. By equation (5), for k ≥ m we have

φv($
k+2u20u1) = Cv1 (u20u1)Ak+2 + Cv2 (u20u1)Bk+2.(7)
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In equation (4) if we choose x = $u0, y = $ku1 for k ≥ m and use the equation
(5) we get

φv($
k+2u20u1) = q−1/2[χ1($u0) + χ2($u0)][Cv1 (u0u1)Ak+1 + Cv2 (u0u1)Bk+1]

− q−1χ1χ2($u0)[Cv1 (u1)Ak + Cv2 (u1)Bk].(8)

If we set the equations (7) and (8) equal to each other, then the some of

Ak[Cv1 (u20u1)A2−q−1/2[χ1($u0)+χ2($u0)]Cv1 (u0u1)A+q−1χ1χ2($u0)Cv1 (u1)]

and

Bk[Cv2 (u20u1)B2−q−1/2[χ1($u0)+χ2($u0)]Cv2 (u0u1)B+q−1χ1χ2($u0)Cv2 (u1)]

is zero. Since this is correct for all k ≥ m we have

Cv1 (u20u1)A2−q−1/2[χ1($u0)+χ2($u0)]Cv1 (u0u1)A+q−1χ1χ2($u0)Cv1 (u1)=0.

Now, the result follows once we substitute q−1/2χ1($) for A. �

Proposition 3.3. If χ1($) 6= ±χ2($), then Cv1 (u) = Cv1χ1(u).

Proof. By using Lemma 3.2, a system of two linear equations of Cv1 (u) and
Cv1 (u−1) will be obtained. If we let u0 = u and u1 = u−1, then by Lemma 3.2,
we have

(9) Cv1 (u) =

[
χ1($u) + χ2($u)

χ1($)

]
Cv1 (1)−

[
χ1(u)χ2($u)

χ1($)

]
Cv1 (u−1).

If we let u0 = u−1 and u1 = u, then similarly we have
(10)

Cv1 (u−1) =

[
χ1($u−1) + χ2($u−1)

χ1($)

]
Cv1 (1)−

[
χ1(u−1)χ2($u−1)

χ1($)

]
Cv1 (u).

By equations (9) and (10) we have

Cv1 (u) =

[
χ1($u) + χ2($u)

χ1($)

]
Cv1 (1)

−
[
χ1(u)χ2($u)

χ1($)

]{[
χ1($u−1) + χ2($u−1)

χ1($)

]
Cv1 (1)

−
[
χ1(u−1)χ2($u−1)

χ1($)

]
Cv1 (u)

}
.

Hence [
χ1($)2 − χ2($)2

]
Cv1 (u) =

[
χ1($)2 − χ2($)2

]
χ1(u)Cv1 (1)

and the result follows. �

Now we will consider the cases for which the left hand side of the above
equation is zero.

Proposition 3.4. If χ1($) = −χ2($) and χ1(u) 6= χ2(u), then Cv1 (u) =
Cv1χ1(u).
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Proof. If χ1($) = −χ2($), then Lemma 3.2 is equivalent to

(11) Cv1 (u20u1) = [χ1(u0)− χ2(u0)]Cv1 (u0u1) + χ1χ2(u0)Cv1 (u1).

By using this relation, two equal expressions for Cv1 (u4) will be obtained but
first we need to find Cv1 (u2) and Cv1 (u3).

By equation (11), if u0 = u and u1 = 1, then

(12) Cv1 (u2) = [χ1(u)− χ2(u)]Cv1 (u) + [χ1χ2(u)]Cv1 (1);

if u0 = u and u1 = u, then

(13) Cv1 (u3) = [χ1(u)− χ2(u)]Cv1 (u2) + [χ1χ2(u)]Cv1 (u);

if u0 = u and u1 = u2, then

(14) Cv1 (u4) = [χ1(u)− χ2(u)]Cv1 (u3) + [χ1χ2(u)]Cv1 (u2);

if u0 = u2 and u1 = 1, then

(15) Cv1 (u4) =
[
χ1(u2)− χ2(u2)

]
Cv1 (u2) +

[
χ1χ2(u2)

]
Cv1 (1).

If we set the equations (14) and (15) equal to each other we get

[χ1(u)− χ2(u)]Cv1 (u3)

=
[
χ1(u2)− χ2(u2)− χ1χ2(u)

]
Cv1 (u2) +

[
χ1χ2(u2)

]
Cv1 (1).

By equation (13)

[2χ2(u)− χ1(u)]Cv1 (u2) + χ1(u) [χ1(u)− χ2(u)]Cv1 (u) =
[
χ1(u2)χ2(u)

]
Cv1 (1)

and by equation (12), we have[
2χ2(u)χ1(u)− 2χ2(u)2 − χ1(u)2 + χ1χ2(u) + χ1(u)2 − χ1(u)χ2(u)

]
Cv1 (u)

=
[
χ1(u)2χ2(u)− 2χ1(u)χ2(u)2 + χ1(u)2χ2(u)

]
Cv1 (1).

Hence

[χ1(u)− χ2(u)]Cv1 (u) = χ1(u) [χ1(u)− χ2(u)]Cv1 (1)

and the result follows. �

Proposition 3.5. If χ1($) = −χ2($), χ1(u) = χ2(u) and
i) there exists α ∈ O× such that χ1(α) 6= ±χ2(α), then Cv1 (u) = Cv1χ1(u).
ii) there exists α ∈ O× such that χ1(α) = −χ2(α), then Cv1 (u) = Cv1χ1(u).

Proof. By using equation (11), and results of the previous proposition two equal
expressions for Cv1 (α2u) will be obtained.

i) Since χ1(αu) 6= χ2(αu) and χ1(α2u) 6= χ2(α2u) from the previous propo-
sition we obtain

(16) Cv1 (αu) = χ1(αu)Cv1 (1)

and

(17) Cv1 (α2u) = χ1(α2u)Cv1 (1).
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By equation (11) we have

Cv1 (α2u) = [χ1(α)− χ2(α)]Cv1 (αu) + χ1χ2(α)Cv1 (u)

and by equations (16) and (17),

χ1(α2u)Cv1 (1) = [χ1(α)− χ2(α)]χ1(αu)Cv1 (1) + χ1χ2(α)Cv1 (u).

Hence χ1(αu)χ2(α)Cv1 (1) = χ1χ2(α)Cv1 (u) and the result follows.
ii) Since χ1(α3y) 6= χ2(α3y) by Proposition 3.4 we have

Cv1 (α3u) = χ1(α3u)Cv1 (1).

By equation (11), we have Cv1 (α3u) = 2χ1(α)C1(α2u)− χ1(α2)C1(αu), hence

χ1(α3u)Cv1 (1) = 2χ1(α)C1(α2u)− χ1(α2)C1(αu)

by previous proposition and this is equivalent to

χ1(α3u)C1(1) = 2χ1(α)C1(α2u)− χ1(α2)χ1(αu)Cv1 (1).

So we have
Cv1 (α2u) = χ1(α2u)Cv1 (1).

Now use the equation (11) one more time to get

Cv1 (α2u) = 2χ1(α)Cv1 (αu)− χ1(α2)Cv1 (u).

Hence
χ1(α2u)Cv1 (1) = 2χ1(α)χ1(αu)Cv1 (1)− χ1(α2)Cv1 (u)

and the proposition follows. �

Proposition 3.6. If χ1($) = −χ2($) and χ1|Ox = χ2|Ox , then Cv1 (u) =
Cv1χ1(u).

Proof. By equation (4), two equal expressions for φv($
k+4u2) will be obtained.

If x = $u and y = $k+2 for k ≥ m, then we have

φv($
k+4u2) = q−1χ1($2u2)φv($

k+2)

and for x = $2u and y = $k we have

φv($
k+4u2) = q−12χ1($2u)φv($

k+2u)− q−2χ1($4u2)φv($
k).

If we set the right hand sides of the two equations above equal to each other
and divide by q−1χ1($2u) we get

χ1(u)φv($
k+2) = 2φv($

k+2u)− q−1χ1($2u)φv($
k).

Also by equation (5), we have

χ1(u)[Cv1 (1)Ak+2 + Cv2 (1)Bk+2]

= 2[Cv1 (u)Ak+2 + Cv2 (u)Bk+2]− q−1χ1($2u)[Cv1 (1)Ak + Cv2 (1)Bk].

Since A = −B = q−1/2χ1($) we get

Ak+2χ1(u)[Cv1 (1) + Cv2 (1)(−1)k]

= 2Ak+2[Cv1 (u) + Cv2 (u)(−1)k]− χ1(u)A2Ak[Cv1 (1) + Cv2 (1)(−1)k].
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Hence

χ1(u)[Cv1 (1) + Cv2 (1)(−1)k]

= 2[Cv1 (u) + Cv2 (u)(−1)k]− χ1(u)[Cv1 (1) + Cv2 (1)(−1)k]

and

χ1(u)Cv1 (1)− Cv1 (u) = [Cv2 (u)− χ1(u)Cv2 (1)](−1)k.

Since the equation above is correct for k ≥ m, both sides of it should be zero
and the proposition follows. �

3.2. Case: χ1($) = χ2($)

In this section, we will prove the following theorem which gives the asymp-
totic behaviour of Krillov model and the main result of this paper in this case.

Theorem 3.7. Let χ1($) = χ2($).
i) If χ1 = χ2, then C

v
1 (u) = χ1(u)Cv1 (1), Cv2 (u) = χ2(u)Cv2 (1) and

φv(x) = Cv1 |x|1/2χ1(x) + Cv2 |x|1/2vk(x)χ2(x)

for small enough |x|.
ii) If χ1 6= χ2, then Cv1 (u) = Dv

1χ1(u) + Dv
2χ2(u), Cv2 (u) = 0 for some

constants Dv
1 and Dv

2 depend only on v and

φv(x) = Dv
1 |x|1/2χ1(x) +Dv

2 |x|1/2χ2(x)

for small enough |x|.

Proof. Results about Cv2 (u) and Cv1 are proved by, case by case consideration
as given in Tables 2 and 3, respectively.

Table 2. Proof of Cv2 (u) part of Theorem 3.7

Prop. 3.10(i) χ1 = χ2 Cv2 (u) = χ1(u)Cv2 (1)
Prop. 3.10(ii) χ1(u4) 6= ±χ2(u4) Cv2 = 0
Prop. 3.10(iii) χ1(u4) = −χ2(u4) Cv2 = 0
Prop. 3.11(i) χ1(u) = −χ2(u) Cv2 = 0
Prop. 3.11(ii) χ1(u2) = −χ2(u2) Cv2 = 0
Proposition 3.12 χ1(u) = χ2(u) and χ1 6= χ2 Cv2 = 0

Table 3. Proof of Cv1 (u) part of Theorem 3.7

Prop. 3.14 χ1 = χ2

Prop. 3.15 χ1 6= χ2 and χ1(u) = χ2(u)
Prop. 3.16 χ1(u) 6= ±χ2(u)
Proposition 3.17 χ1(u) = −χ2(u)

�
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The lemmas and propositions mentioned in Tables 2 and 3 will be proved
in the rest of this case. The first lemma provides the general behaviour of Cv1
and Cv2 .

Lemma 3.8. If χ1($) = χ2($), then for u0, u1 ∈ O× we have

Cv1 (u20u1) = [χ1(u0) + χ2(u0)]Cv1 (u0u1)− χ1χ2(u0)Cv1 (u1)

− [χ1(u0) + χ2(u0)]Cv2 (u0u1) + 2χ1χ2(u0)Cv2 (u1)

and

(18) Cv2 (u20u1) = [χ1(u0) + χ2(u0)]Cv2 (u0u1)− χ1χ2(u0)Cv2 (u1).

Proof. By equation (6), we have

(19) φ($k+2u20u1) = [Cv1 (u20u1) + Cv2 (u20u1)(k + 2)]Ak+2.

In equation (4), if we choose x = $u0 and y = $ku1 for k ≥ m and use the
equation (6), then we get

φv($
k+2u20u1)

= q−1/2χ1($)[χ1(u0) + χ2(u0)][Cv1 (u0u1) + Cv2 (u0u1)(k + 1)]Ak+1

− q−1χ1($)2χ1(u0)χ2(u0)[Cv1 (u1) + Cv2 (u1)k]Ak.(20)

Now if we set the equations (19) and (20) equal to each other, then we have

[C1(u20u1) + C2(u20u1)(k + 2)]Ak+2

= A[χ1(u0) + χ2(u0)][Cv1 (u0u1) + Cv2 (u0u1)(k + 1)]Ak+1

−A2χ1χ2(u0)[Cv1 (u1) + Cv2 (u1)k]Ak.

Hence the sum of

[Cv1 (u20u1) + 2Cv2 (u20u1)]− [χ1(u0) + χ2(u0)][Cv1 (u0u1) + Cv2 (u0u1)]

+ χ1(u0)χ2(u0)Cv1 (u1)

and
k[Cv2 (u20u1)− [χ1(u0) + χ2(u0)]Cv2 (u0u1) + χ1χ2(u0)Cv2 (u1)]

is zero. Since this holds for all k ≥ m, the result follows. �

Now we will find a more simple expression for Cv2 (u).

Lemma 3.9.

[χ1(u) + χ2(u)]
{

[χ1(u2) + χ2(u2)]Cv2 (u)− [χ1(u) + χ2(u)]χ1χ2(u)Cv2 (1)
}

= 0.

Proof. We will find two equal expressions for Cv1 (u4). In Lemma 3.8, if u0 = u
and u1 = 1, then

(21) Cv2 (u2) = [χ1(u) + χ2(u)]Cv2 (u)− χ1χ2(u)Cv2 (1),

Cv1 (u2) = [χ1(u) + χ2(u)]Cv1 (u)− χ1χ2(u)Cv1 (1)(22)

− [χ1(u) + χ2(u)]Cv2 (u) + 2χ1χ2(u)Cv2 (1);
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if u0 = u and u1 = u, then

(23) Cv2 (u3) = [χ1(u) + χ2(u)]Cv2 (u2)− χ1χ2(u)Cv2 (u),

Cv1 (u3) = [χ1(u) + χ2(u)]Cv1 (u2)− χ1χ2(u)Cv1 (u)(24)

− [χ1(u) + χ2(u)]Cv2 (u2) + 2χ1χ2(u)Cv2 (u);

if u0 = u and u1 = u2, then

Cv1 (u4) = [χ1(u) + χ2(u)]Cv1 (u3)− χ1χ2(u)Cv1 (u2)(25)

− [χ1(u) + χ2(u)]Cv2 (u3) + 2χ1χ2(u)Cv2 (u2);

if u0 = u2 and u1 = 1, then

Cv1 (u4) = [χ1(u2) + χ2(u2)]Cv1 (u2)− χ1χ2(u2)Cv1 (1)(26)

− [χ1(u2) + χ2(u2)]Cv2 (u2) + 2χ1χ2(u2)Cv2 (1).

If we set the equations (25) and (26) equal to each other, then we get

[χ1(u) + χ2(u)]Cv1 (u3)− [χ1(u2) + χ1χ2(u) + χ2(u2)]Cv1 (u2)(27)

+ χ1χ2(u2)Cv1 (1)

= [χ1(u) + χ2(u)]Cv2 (u3)− [χ1(u) + χ2(u)]2Cv2 (u2) + 2χ1χ2(u2)Cv2 (1).

If we use the equations (24), (22) and (21) respectively, then the left hand side
of the equation (27) becomes{

χ1χ2(u)[χ1(u) + χ2(u)]− [χ1(u) + χ2(u)]3
}
Cv2 (u)

+
{

[χ1(u) + χ2(u)]2χ1(u)χ2(u) + 2χ1χ2(u2)
}
Cv2 (1).

By equations (23) and (21), the right hand side of the equation (27) becomes

−χ1χ2(u)[χ1(u) + χ2(u)]Cv2 (u) + 2χ1χ2(u2)Cv2 (1).

If we set the left and right hand sides of (27) equal to each other, then the
result follows. �

The following proposition deals with the cases for which the coefficient of
Cv2 in Lemma 3.9 is nonzero.

Proposition 3.10. i) If χ1(u) = χ2(u), then Cv2 (u) = χ1(u)Cv2 (1).
ii) If χ1(u4) 6= ±χ2(u4), then Cv2 (u) = 0.
iii) If χ1(u4) = −χ2(u4), then Cv2 (u) = 0.

Proof. i) The result follows from Lemma 3.9.
ii) Since χ1(u2) 6= ±χ2(u2), by Lemma 3.9 we have

(28) Cv2 (u) =
[χ1(u) + χ2(u)]χ1χ2(u)

χ1(u2) + χ2(u2)
Cv2 (1)

and since χ1(u4) 6= ±χ2(u4),

Cv2 (u2) =
[χ1(u2) + χ2(u2)]χ1χ2(u2)

χ1(u4) + χ2(u4)
Cv2 (1).
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By equation (21), we have{
[χ1(u2)+χ2(u2)]χ1χ2(u2)

χ1(u4)+χ2(u4)
+χ1χ2(u)− [χ1(u)+χ2(u)]2χ1χ2(u)

χ1(u2)+χ2(u2)

}
Cv2 (1)=0.

Hence [χ1(u2)− χ2(u2)]Cv2 (1) = 0 and the second part follows.
iii) Since χ1(u4) = −χ2(u4) we have χ1(u2) 6= ±χ(u

2). By Lemma 3.9 for

u2 we get Cv2 (1) = 0. Hence from the equation (28) we have Cv2 (u) = 0. �

Now we are in the case χ1(u4) = χ2(u4).

Proposition 3.11. i) If χ1(u) = −χ2(u), then Cv2 (u) = 0.
ii) If χ1(u2) = −χ2(u2), then Cv2 (u) = 0.

Proof. i) We will find two equal expressions for Cv2 (u7). By equation (23),

Cv2 (u3) = χ1(u2)Cv2 (u)

and by Lemma 3.8 and the equation above if u0 = u and u1 = u3, then

(29) Cv2 (u5) = χ1(u2)Cv2 (u3) = χ1(u4)Cv2 (u).

By equation (24),

Cv1 (u3) = χ1(u2)[Cv1 (u)− 2Cv2 (u)]

and by Lemma 3.8 and the equation above if u0 = u and u1 = u3, then

Cv1 (u5) = Cv1 [(u)2u3]

= χ1(u2)Cv1 (u3)− 2χ1(u2)Cv2 (u3)

= χ1(u4)[Cv1 (u)− 2Cv2 (u)]− 2χ1(u4)Cv2 (u)

= χ1(u4)[Cv1 (u)− 4Cv2 (u)].(30)

By Lemma 3.8, if u0 = u3 and u1 = u, then

Cv2 (u7) = Cv1 [(u3)2u]

= χ1(u6)Cv1 (u)− 2χ1(u6)Cv2 (u)

= χ1(u6)[Cv1 (u)− 2Cv2 (u)].(31)

Similarly, by Lemma 3.8 and the equation 29 if u0 = u and u1 = u5, then

Cv2 (u7) = Cv1 [(u)2u5]

= χ1(u2)χ1(u4)[Cv1 (u)− 4Cv2 (u)]− 2χ1(u2)χ1(u4)Cv2 (u)

= χ1(u6)[Cv1 (u)− 6Cv2 (u)].(32)

Therefore Cv2 (u) = 0 by equations (31) and (32).
ii) First note that by Lemma 3.9, Cv2 (1) = 0 and from the first part, Cv2 (u2) =

0. Hence by equation (21) Cv2 (u) = 0. �

Now we will show that Cv2 (u) = 0 when χ1 6= χ2 and χ1(u) = χ2(u).
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Proposition 3.12. i) If χ1(u) = χ2(u) and there exists α ∈ O× such that
χ1(α) 6= ±χ2(α), then Cv2 (u) = 0.

ii) If χ1(u) = χ2(u), χ1 = ±χ2 and there exists α ∈ O× such that χ1(α) =
−χ2(α), then Cv2 (u) = 0.

Proof. i) By Propositions 3.10(ii), (iii), 3.11(ii) and Lemma 3.9 Cv2 (α) = 0 and
we have Cv2 (1) = 0. Now the result follows from Proposition 3.10(i).

ii) In equation (4), if we take x = $α and y = $k+2u, then

(33) φv($
k+4α2u) = q−1χ1($2α2)φv($

k+2u)

and x = $2α and y = $ku, then

(34) φv($
k+4α2u) = q−2χ1($4α2)φv($

ku).

If we set the equations (33) and (34) equal to each other we get

φv($
k+2u) = q−1χ1($2)φv($

ku).

Now by equation (6), the equation above is

[Cv1 (u) + (k + 2)Cv2 (u)]Ak+2 = A2[Cv1 (u) + kCv2 (u)]Ak.

Hence Cv2 (u) = 0. �

Now we will prove the results of Theorem 3.7 about Cv1 . The following
lemma provides the general behaviour of Cv1 .

Lemma 3.13. If u0, u1 ∈ O×, then we have

Cv1 (u20u1) = [χ1(u0) + χ2(u0)]Cv1 (u0u1)− χ1χ2(u0)Cv1 (u1).

Proof. By Lemma 3.8, we need to show that

(35) − [χ1(u0) + χ2(u0)]Cv2 (u0u1) + 2χ1χ2(u0)Cv2 (u1) = 0.

From the first part of Theorem 3.7, if χ1 6= χ2, then Cv2 = 0 and if χ1 = χ2,
then Cv2 (u) = χ1(u)Cv2 (u). Hence the result follows for both cases. �

Now, we will find Cv1 (u) by case by case consideration.

Proposition 3.14. If χ1 = χ2, then we have Cv1 (u) = χ1(u)Cv1 (1).

Proof. We will find two equal expressions for Cv1 (u20u
2
1). By Lemma 3.13, for

u0, u1 ∈ O× we have

Cv1 (u20u
2
1) = Cv1 [(u0)2u21]

= 2χ1(u0)Cv1 (u0u
2
1)− χ1(u20)Cv1 (u21)

= 2χ1(u0)[2χ1(u1)Cv1 (u0u1)− χ1(u21)Cv1 (u0)]

− χ1(u20)[2χ1(u1)Cv1 (u1)− χ1(u21)Cv1 (1)]

= 4χ1(u0u1)Cv1 (u0u1)− 2χ1(u0u
2
1)Cv1 (u0)− 2χ1(u20u1)Cv1 (u1)

+ χ1(u20u
2
1)Cv1 (1)(36)
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and

(37) Cv1 (u20u
2
1) = Cv1 ((u0)2u21) = 2χ1(u0u1)Cv1 (u0u1)− χ1(u20u

2
1)Cv1 (1).

If we set the equations (36) and (37) equal to each other we get

2χ1(u0u1)Cv1 (u0u1)=2χ1(u0u
2
1)Cv1 (u0)+2χ1(u20u1)Cv1 (u1)−2χ1(u20u

2
1)Cv1 (1).

Now if we divide this equation by 2χ1(u20u
2
1), then we have

Cv1 (u0u1)

χ1(u0u1)
=
Cv1 (u0)

χ1(u0)
+
Cv1 (u1)

χ1(u1)
− Cv1 (1).(38)

If we define

l : O× → C, l(x) =
Cv1 (x)

χ1(x)
− Cv1 (1),

then l is a continuous (locally constant) homomorphism by equation (38). O×
is a compact group hence the image of l is a compact subgroup of C. The only
compact subgroup of C is {0} so l = 0 and Cv1 (u) = χ1(u)Cv1 (1). �

Now we are in the case of χ1 6= χ2 hence there exists r ∈ O× such that
χ1(r) 6= χ2(r). We define

Dv
1 =

Cv1 (r)− χ2(r)Cv1 (1)

χ1(r)− χ2(r)
and Dv

2 =
χ1(r)Cv1 (1)− Cv1 (r)

χ1(r)− χ2(r)
.

Define H(x) := Cv1 (x) − χ1(x)Dv
1 − χ2(x)Dv

2 . Hence to prove the results in
Theorem 3.7 about Cv1 we need to show that H(u) = 0.

Proposition 3.15. If χ1 6= χ2 and χ1(u) = χ2(u), then H(u) = 0.

Proof. Let S = {u ∈ O× : χ1

χ2
(u) = 1} then this set is compact and as in

the proof of the previous proposition we can find a continuous homomorphism
(l|S) from S to C and we get if u ∈ S, then Cv1 (u) = χ1(u)Cv1 (1) and so
H(u) = 0. �

Proposition 3.16. If χ1(u) 6= ±χ2(u), then H(u) = 0.

Proof. By Lemma 3.13, find two equal expressions for Cv1 (u2r2).

Cv1 (u2r2) = Cv1 [(u)2r2]

= [χ1(u) + χ2(u)]Cv1 (ur2)− χ1χ2(u)Cv1 (r2)

= [χ1(u) + χ2(u)]{[χ1(r) + χ2(r)]Cv1 (ur)− χ1χ2(r)Cv1 (u)}
− χ1χ2(u){[χ1(r) + χ2(r)]Cv1 (r)− χ1χ2(r)Cv1 (1)}

= [χ1(u) + χ2(u)][χ1(r) + χ2(r)]Cv1 (ur)

− χ1χ2(r)[χ1(u) + χ2(u)]Cv1 (u)

− χ1χ2(u)[χ1(r) + χ2(r)]Cv1 (r) + χ1χ2(ur)Cv1 (1)](39)

and

(40) Cv1 (u2r2) = Cv1 [(ur)2] = [χ1(ur) + χ2(ur)]Cv1 (ur)− χ1χ2(ur)Cv1 (1).
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If we set the equations (39) and (40) equal to each other we get

[χ1(u)χ2(r) + χ1(r)χ2(u)]Cv1 (ur)− χ1χ2(r)[χ1(u) + χ2(u)]Cv1 (u)

− χ1χ2(u)[χ1(r) + χ2(r]Cv1 (r) + 2χ1χ2(ur)Cv1 (1)] = 0.

Now divide the each term by χ1χ2(u) then[
χ1

( r
u

)
+ χ2

( r
u

)]
Cv1 (ur)− χ1χ2(r)

[
1

χ1(u)
+

1

χ2(u)

]
Cv1 (u)

− χ1(r)[Cv1 (r)− χ2(r)Cv1 (1)] + χ2(r)[χ1(r)Cv1 (1)− Cv1 (r)] = 0.

Hence

χ1

( r
u

)
{Cv1 (ur)− χ2(r)Cv1 (u)− χ1(u)[Cv1 (r)− χ2(r)Cv1 (1)]}

+ χ2

( r
u

)
{Cv1 (ur)− χ1(r)Cv1 (u) + χ2(u)[χ1(r)Cv1 (1)− Cv1 (r)]} = 0

and

χ1

( r
u

)
{Cv1 (ur)− χ2(r)Cv1 (u)− χ1(u)Dv

1 [χ1(r)− χ2(r)]}

+ χ2

( r
u

)
{Cv1 (ur)− χ1(r)Cv1 (u) + χ2(u)Dv

2 [χ1(r)− χ2(r)]} = 0.

So we have

(41) χ1

( r
u

)
[H(ur)− χ2(r)H(u)] + χ2

( r
u

)
[H(ur)− χ1(r)H(u)] = 0

and

(42)
[
χ1

( r
u

)
+ χ2

( r
u

)]
H(ur) = χ1χ2(r)

[
1

χ1(u)
+

1

χ2(u)

]
H(u).

Since the equation (42) is symmetric with respect to u and r we also get

(43)
[
χ1

(u
r

)
+ χ2

(u
r

)]
H(ur) = χ1χ2(u)

[
1

χ1(r)
+

1

χ2(r)

]
H(r).

Note that

H(r) = Cv1 (r)− χ1(r)Dv
1 − χ2(r)Dv

2

= Cv1 (r)− χ1(r)

[
Cv1 (r)− χ2(r)Cv1 (1)

χ1(r)− χ2(r)

]
− χ2(r)

[
χ1(r)Cv1 (1)− Cv1 (r)

χ1(r)− χ2(r)

]
= 0.

Hence by equation (43), H(ur) = 0 and by equation (42), H(u) = 0. �

Proposition 3.17. i) If χ1(u) = −χ2(u) and χ1(r) = −χ(r), then H(u) = 0.
ii) If χ1(u) = −χ2(u) and χ1(r) 6= ±χ(r), then H(u) = 0.

Proof. i) By Lemma 3.13, find two equal expressions for Cv1 (u2r3).

Cv1 (u2r3) = Cv1 [(u)2r3](44)

= χ1(u2)Cv1 (r3) = χ1(u2)Cv1 [(r)2r] = χ1(u2r2)Cv1 (r)
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and

Cv1 (u2r3) = Cv1 [(ur)2r]

= 2χ1(ur)Cv1 [u(r)2]− χ1(u2r2)Cv1 (r)

= 2χ1(ur)[χ1(r2)Cv1 (u)]− χ1(u2r2)Cv1 (r)

= 2χ1(ur3)Cv1 (u)− χ1(u2r2)Cv1 (r).(45)

If we set the equations (44) and (45) equal to each other, then we get the
result.

ii) Since χ1(ur) 6= ±χ2(ur) and χ1(ur3) 6= ±χ2(ur3), by Proposition 3.16
H(ur) and H(ur3) are zero. Hence

(46) Cv1 (ur) = χ1(ur)Dv
1 + χ2(ur)Dv

2

and

(47) Cv1 (ur3) = χ1(ur3)Dv
1 + χ2(ur3)Dv

2 .

By Lemma 3.13, we have

Cv1 (ur3)

= [χ1(r) + χ2(r)]Cv1 (ur2)− χ1χ2(r)Cv1 (ur)

= [χ1(r) + χ2(r)]{[χ1(r) + χ2(r)]Cv1 (ur)− χ1χ2(r)Cv1 (u)} − χ1χ2(r)Cv1 (ur)

= [χ1(r2) + χ2(r2) + χ1χ2(r)]Cv1 (ur)− χ1χ2(r)[χ1(r) + χ2(r)]Cv1 (u)

and by equations (46) and (47) we get the result. �
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