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COMPUTING FUZZY SUBGROUPS OF SOME SPECIAL

CYCLIC GROUPS

Babington Makamba and Michael M. Munywoki

Abstract. In this paper, we discuss the number of distinct fuzzy sub-

groups of the group Zpn ×Zqm ×Zr, m = 1, 2, 3 where p, q, r are distinct
primes for any n ∈ Z+ using the criss-cut method that was proposed by

Murali and Makamba in their study of distinct fuzzy subgroups. The

criss-cut method first establishes all the maximal chains of the subgroups
of a group G and then counts the distinct fuzzy subgroups contributed

by each chain. In this paper, all the formulae for calculating the number
of these distinct fuzzy subgroups are given in polynomial form.

1. Introduction

The groupG = Zpn×Zqm×Zr where p, q, r are distinct primes andm,n ∈ Z+

is cyclic. In this paper, we will sometimes use pnqmr to denote the group
Zpn × Zqm × Zr. We believe that the study of fuzzy groups, including their
classification, is very important and interesting because of the importance of
fuzzy logic in general. As Murali and Makamba in [5] puts it: one of the
most interesting problems in fuzzy group theory is to classify fuzzy subgroups
up to some unique invariants of the underlying group. In our classification
and counting, we use the equivalence relation defined in [1]. The concept of
fuzzy sets was introduced by Zadeh [12] in 1965 and Rosenfeld [9] followed
by introducing the concepts of fuzzy subgroupoids and fuzzy subgroups. Fuzzy
subgroups have recently been studied by [1,3,4,7] among others, thus extending
the work done by the earlier authors like Das in [11] and Sherwood in [10].

We begin by first giving some fundamental concepts, definitions and propo-
sitions that will be used in this paper. The number of maximal chains of the
finite abelian group pnqmr is given in [7] and briefly discussed here. Using the
equivalence relation given by Murali and Makamba in [3] and their criss-cut
counting technique therein, we classify the fuzzy subgroups of the abelian group
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pnqmr for m = 1, 2, 3, 4. This will extend the work of [3] where a classification
of the fuzzy subgroups of the finite abelian group pnqm was done using the
cross-cut counting technique.

2. Preliminaries

Since our counting of fuzzy subgroups is anchored on the maximal chains of
subgroups of a group G, we look at some important concepts relating to the
maximal chains of subgroups of G.

Definition. A proper subgroup M of a group G is called maximal if whenever
M ≤ H ≤ G, then either H = M or H = G. A chain of subgroups of a group
is said to be a maximal chain if it cannot be properly contained in another
chain.

O. Ndiweni in [7], working on the number of maximal chains of finite abelian
groups, gave the following results in Proposition 2.1.

Proposition 2.1. The group Zpn × Zqm × Zrs has (n+m+s)!
n!m!s! maximal chains.

Remark 2.2. The word chain(s) in this paper is used to mean subgroup maximal
chain(s) unless otherwise stated.

Let I = [0, 1] be the unit interval of real numbers with the usual ordering and
let X be a non-empty set. A fuzzy subset of X is characterized by a function
µ : X → I. µ is called the membership function and µ(x) is the degree of
membership of the element x to the fuzzy subset of X defined by µ.

Definition. The support of µ, denoted by supp(µ), is defined as supp(µ) =
{x ∈ X : µ(x) > 0}.

Definition ([9]). Let G be a group. A fuzzy subset µ of G is said to be a fuzzy
subgroup of G, if for all x, y ∈ G

(i) µ(xy) ≥ min{m(x), µ(y)},
(ii) µ(x−1) ≥ µ(x).

Definition ([3]). Two fuzzy subgroups µ and ν of a group G are said to be
equivalent denoted µ ∼ ν if

(i) for all x, y ∈ X, µ(x) > µ(y) if and only if ν(x) > ν(y),
(ii) µ(x) = 0 if and only if ν(x) = 0.

Clearly this relation is an equivalence relation on IX and it coincides with
equality of sets when restricted to 2X .

Definition ([9]). Let G be a group. A fuzzy subset µ of G is said to be a fuzzy
subgroup of G if for all x, y ∈ G

(i) µ(xy) ≥ min{m(x), µ(y)},
(ii) µ(x−1) ≥ µ(x).
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Remark 2.3. According to Murali and Makamba [4], two fuzzy subgroups are
distinct if they are non-equivalent.

In our current work, we use the criss-cut method [6, 8], in counting distinct
fuzzy subgroups. In this method, we first list all the maximal chains of the
group and then use the counting technique (criss-cut) to enumerate the distinct
fuzzy subgroups. The technique is explained in detail in [2, 8], but we give its
summarized discussion below.

Remark 2.4. The order of listing our maximal subgroup chains does not matter
and so does not alter the number of distinct fuzzy subgroups. Thus we can start
the counting from any chain in the list and proceed in any order. Therefore we
number our maximal chains here according to the order in which we consider
the chains in our counting.

Criss-cut counting technique

Let G be a group having the property that all its maximal chains are of the
same length. By length, we mean the number of subgroups in the maximal
chain. From the list of the maximal subgroup chains, suppose our first chain is

0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hn = G.(1)

By [3], the chain (1) contributes 2n+1 − 1 distinct fuzzy subgroups of G. Let
our next maximal chain be

0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jn = G(2)

such that for some i, Ji 6= Hi where i ∈ {1, 2, . . . , n − 1}. This new subgroup
Ji is called a distinguishing factor of the maximal chain as it distinguishes the
chain from the previous one. If this new chain has two or more subgroups that
were not in the first one, we simply pick one and call it a distinguishing factor
for the chain. The other new subgroups will be used in subsequent maximal
chains as distinguishing factors. Thus if a Jk is new in the second chain but
was not used to distinguish that chain from the first, it may be used in the next
chosen chain that contains it as a distinguishing factor. However, once used,
a new subgroup cannot be a distinguishing factor in another maximal chain.
The number of distinct fuzzy subgroups of G contributed by the chain (2) is
given by Proposition 2.5.

Proposition 2.5 ([8]). The number of distinct fuzzy subgroups of G contributed

by a maximal subgroup chain with a distinguishing factor is equal to 2n+1

2 = 2n

for n ≥ 2.

This process of identifying distinguishing factors is continued until there are
no distinguishing factors in the chains. Note that none of the subgroups in the
first chain may be used as a distinguishing factor.

After exhausting all distinguishing factors, the next step is to use pairs of
subgroups to distinguish maximal chains. Suppose in our counting process, we
encounter a maximal subgroup chain 0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn = G, such
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that there are no (single) distinguishing factors, but there is a pair {Ki,Kj},
i 6= j, of subgroups in this chain that have not appeared in any previous chain
(together) not necessarily consecutively. We call this pair a distinguishing pair
for the chain. So if subgroups Ki and Kj have not appeared together in the
previous maximal chains, then they are indeed a new pair. As in the case of
single distinguishing factors, if there is another new pair (H,K) in that chain
containing Ki and Kj , then the pair (H,K) may be used in a subsequent chain
as a (new) distinguishing pair. The focus is on using a subgroup or a pair of
subgroups to tag (or identify) a maximal chain. The number of (new) distinct
fuzzy subgroups contributed by this chain (with a distinguishing pair) is given
below.

Proposition 2.6 ([8]). In the process of counting distinct fuzzy subgroups,
a maximal subgroup chain that has no single distinguishing factor but has a

distinguishing pair, contributes 2n+1

22 = 2n−1 new distinct fuzzy subgroups of G
for n ≥ 4.

After exhausting all distinguishing pairs, we proceed to distinguishing triples.
These are treated just like distinguishing pairs. A chain with no distinguish-
ing factor and no distinguishing pair but has three subgroups (H,J,K) that
have not appeared together in any previous chain, has a distinguishing triple.
Another new triple in the same chain may be used in a subsequent chain as

a distinguishing triple. Such a chain contributes 2n+1

23 new distinct fuzzy sub-
groups.

If the maximal chains have not been exhausted, continue to use a distinguish-
ing quadruple. Continue until all the maximal chains have been exhausted. This
counting argument can be generalised in Proposition 2.7, which gives only the
contribution of a single maximal chain to the total number of distinct fuzzy
subgroups other than the first two chosen maximal chains.

Proposition 2.7. In a finite group G, if a maximal subgroup chain of length
n + 1, other than the first two chosen chains, has no distinguishing (m − 1)-
tuple, but has a distinguishing m-tuple for m ≥ 2, then the chain contributes
2n+1

2m = 2n+1−m new distinct fuzzy subgroups of G, n+ 1 > m.

Note that a distinguishing 1-tuple is distinguishing factor; a distinguishing
2-tuple is distinguishing pair, and so forth.

Remark 2.8. In this paper, a distinguishing factor is indicated by ∗, a dis-
tinguishing pair by {∗, ∗∗} and a distinguishing triple by {∗, ∗∗, ∗ ∗ ∗}. This
indication can be extended similarly to a distinguishing quadruple and beyond.

Murali and Makamba in [5] worked on the number of distinct fuzzy sub-
groups of the group Zpn × Zqm using the cross-cut method. They obtained
important results which we summarize in Theorem 2.9.
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Theorem 2.9 ([5]). The number of distinct fuzzy subgroups for the group Zpn×
Zqm is [

2n+m+1
m∑
r=0

2−r

(
n

r

)(
m

r

)]
− 1, n ≥ m.

3. Distinct fuzzy subgroups of Zpn × Zqm × Zr, n,m ∈ Z+,
m = 1, 2, 3; p, q, r distinct primes

To achieve our objective of counting the distinct fuzzy subgroups in each
group, the maximal chains of each group are listed. The number of distinct
fuzzy subgroups is then counted using the criss-cut method of [5]. The counting
method used here is different from the one used in [7]. Moreover, the formu-
lae presented here are in polynomial form. The polynomial formulae make it
easy for one to see from the coefficients of powers of 2, the number of chains
contributing a distinguishing factor, a distinguishing pair, and so on.

3.1. Distinct fuzzy subgroups of Zpn × Zq × Zr

We begin with the case m = 1. When n = 1, 2, we list the maximal chains
and their corresponding distinct fuzzy subgroups which have been computed
manually. For n = 1, 2, Zp × Zq × Zr and Zp2 × Zq × Zr have 1 · (24 − 1) + 4 ·
23 + 1 · 22 = 51 and 1 · (25 − 1) + 7 · 24 + 4 · 23 = 175 distinct fuzzy subgroups
respectively. This is shown in Figure 1.

pqr ⊇ pq ⊇ p ⊇ 0 : 24 − 1

pqr ⊇ pq ⊇ q ⊇ 0 : 23

pqr ⊇ pr ⊇ p ⊇ 0 : 23

pqr ⊇ pr ⊇ r ⊇ 0 : 23

pqr ⊇ qr ⊇ q ⊇ 0 : 23

pqr ⊇ qr ⊇ r ⊇ 0 : 22

p2qr ⊇ qpr ⊇ pq ⊇ p ⊇ 0 : 25 − 1

p2qr ⊇ qpr ⊇ pq ⊇ q ⊇ 0 : 24

p2qr ⊇ qpr ⊇ pr ⊇ p ⊇ 0 : 24

p2qr ⊇ qpr ⊇ pr ⊇ r ⊇ 0 : 24

p2qr ⊇ qpr ⊇ qr ⊇ q ⊇ 0 : 24

p2qr ⊇ qpr ⊇ qr ⊇ r ⊇ 0 : 23

p2qr ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 24

p2qr ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 23

p2qr ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 24

p2qr ⊇ p2r ⊇ pr ⊇ p ⊇ 0 : 24

p2qr ⊇ p2r ⊇ pr ⊇ r ⊇ 0 : 23

p2qr ⊇ p2r ⊇ p2 ⊇ p ⊇ 0 : 23

Figure 1. Fuzzy subgroups of pqr and p2qr

For n = 3, 4, Zp3×Zq×Zr and Zp4×Zq×Zr have 1·(26−1)+10·25+9·24 = 527
and 1 · (27 − 1) + 13 · 26 + 16 · 25 = 1471 distinct fuzzy subgroups respectively
as shown in Figure 2 and Figure 3.
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p3qr ⊇ qpr ⊇ pq ⊇ p ⊇ 0 : 26 − 1

p3qr ⊇ p2qr ⊇ qpr ⊇ pq ⊇ q ⊇ 0 : 25

p3qr ⊇ p2qr ⊇ qpr ⊇ pr ⊇ p ⊇ 0 : 25

p3qr ⊇ p2qr ⊇ qpr ⊇ pr ⊇ r ⊇ 0 : 25

p3qr ⊇ p2qr ⊇ qpr ⊇ qr ⊇ q ⊇ 0 : 25

p3qr ⊇ p2qr ⊇ qpr ⊇ qr ⊇ r ⊇ 0 : 24

p3qr ⊇ p2qr ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 25

p3qr ⊇ p2qr ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 24

p3qr ⊇ p2qr ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 25

p3qr ⊇ p2qr ⊇ p2r ⊇ pr ⊇ p ⊇ 0 : 25

⇒
Ctd···

p3qr ⊇ p2qr ⊇ p2r ⊇ pr ⊇ r ⊇ 0 : 24

p3qr ⊇ p2qr ⊇ p2r ⊇ p2 ⊇ p ⊇ 0 : 24

p3qr ⊇ p3q ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 25

p3qr ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 24

p3qr ⊇ p3q ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 24

p3qr ⊇ p3q ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 25

p3qr ⊇ p3r ⊇ p2r ⊇ pr ⊇ p ⊇ 0 : 25

p3qr ⊇ p3r ⊇ p2r ⊇ pr ⊇ r ⊇ 0 : 24

p3qr ⊇ p3r ⊇ p2r ⊇ p2 ⊇ p ⊇ 0 : 24

p3qr ⊇ p3r ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 24

Figure 2. Fuzzy subgroups of p3qr

p4qr ⊇ p3qr ⊇ qpr ⊇ pq ⊇ p ⊇ 0 : 27 − 1

p4qr ⊇ p3qr ⊇ p2qr ⊇ qpr ⊇ pq ⊇ q ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p2qr ⊇ qpr ⊇ pr ⊇ p ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p2qr ⊇ qpr ⊇ pr ⊇ r ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p2qr ⊇ qpr ⊇ qr ⊇ q ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p2qr ⊇ qpr ⊇ qr ⊇ r ⊇ 0 : 25

p4qr ⊇ p3qr ⊇ p2qr ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p2qr ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 25

p4qr ⊇ p3qr ⊇ p2qr ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p2qr ⊇ p2r ⊇ pr ⊇ p ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p2qr ⊇ p2r ⊇ pr ⊇ r ⊇ 0 : 25

p4qr ⊇ p3qr ⊇ p2qr ⊇ p2r ⊇ p2 ⊇ p ⊇ 0 : 25

p4qr ⊇ p3qr ⊇ p3q ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 25

p4qr ⊇ p3qr ⊇ p3q ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 25

⇒
Ctd···

p4qr ⊇ p3qr ⊇ p3q ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p3r ⊇ p2r ⊇ pr ⊇ p ⊇ 0 : 26

p4qr ⊇ p3qr ⊇ p3r ⊇ p2r ⊇ pr ⊇ r ⊇ 0 : 25

p4qr ⊇ p3qr ⊇ p3r ⊇ p2r ⊇ p2 ⊇ p ⊇ 0 : 25

p4qr ⊇ p3qr ⊇ p3r ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 25

p4qr ⊇ p4q ⊇ p3q ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 26

p4qr ⊇ p4q ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 25

p4qr ⊇ p4q ⊇ p3q ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 25

p4qr ⊇ p4q ⊇ p3q ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 25

p4qr ⊇ p4q ⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 26

p4qr ⊇ p4r ⊇ p3r ⊇ p2r ⊇ pq ⊇ p ⊇ 0 : 26

p4qr ⊇ p4r ⊇ p3r ⊇ p2r ⊇ pq ⊇ r ⊇ 0 : 25

p4qr ⊇ p4r ⊇ p3r ⊇ p2r ⊇ p2 ⊇ p ⊇ 0 : 25

p4qr ⊇ p4r ⊇ p3r ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 25

p4qr ⊇ p4r ⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0 : 25

Figure 3. Fuzzy subgroups of p4qr

Table 1. Fuzzy subgroups of Zpn × Zq × Zr

n pnqr Number of fuzzy subgroups

1 pqr 51 = 1 · (24 − 1) + 4 · 23 + 1 · 22
2 p2qr 175 = 1 · (25 − 1) + 7 · 24 + 4 · 23
3 p3qr 527 = 1 · (26 − 1) + 10 · 25 + 9 · 24
4 p4qr 1471 = 1 · (27 − 1) + 13 · 26 + 16 · 25
5 p5qr 3903 = 1 · (28 − 1) + 16 · 27 + 25 · 26
6 p6qr 9983 = 1 · (29 − 1) + 19 · 28 + 36 · 27
7 p7qr 24831 = 1 · (210 − 1) + 22 · 29 + 49 · 28
...

...
...

k pkqr 2k+3 − 1 + (3k + 1) · 2k+2 + k2 · 2k+1
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Table 1, which extends these results to higher values of n, suggests:

Proposition 3.1. The number of distinct fuzzy subgroups of the group Zpn ×
Zq × Zr is

2n+3 − 1 + (3n+ 1) · 2n+2 + n2 · 2n+1.

Proof. We proceed by induction on n. For n = 1, Zp ×Zq ×Zr has 6 maximal
chains as computed in the discussion that lead to Table 1.

The first maximal chain yields 24 − 1 distinct fuzzy subgroups. Each of the
next 4 chains has a distinguishing factor, thus contributes 23 distinct fuzzy
subgroups. The last chain has a new pair and therefore contributes 22 distinct
fuzzy subgroups. Hence Zp × Zq × Zr has 24 − 1 + 4 · 23 + 22 distinct fuzzy
subgroups. Clearly this number is also obtainable by letting n = 1 in the
formula of Proposition 3.1. Thus the proposition is true for n = 1.

Now assume Zpk ×Zq ×Zr has 2k+3− 1 + (3k+ 1) · 2k+2 + k2 · 2k+1 distinct

fuzzy subgroups. We want to show that Zpk+1 ×Zq ×Zr has 2k+4 − 1 + [3(k+

1)+1] ·2k+3+(k+1)2 ·2k+2 distinct fuzzy subgroups. Let G = Zpk+1×Zq×Zr.
The maximal chains of G have length k + 4. These maximal chains are shown
in Figure 4.

pk+1qr ⊇ pkqr ⊇ pk−1qr ⊇



pk−2qr ⊇


· · ·
· · ·
· · ·

pk−1q ⊇

{
· · ·
· · ·

pk−1r ⊇

{
· · ·
· · ·

pk+1qr ⊇ pkqr ⊇ pkq ⊇

p
k−1q ⊇

{
· · ·
· · ·

pk ⊇ · · ·

pk+1qr ⊇ pkqr ⊇ pkr ⊇

p
k−1r ⊇

{
· · ·
· · ·

pk ⊇ · · ·

⇒
Ctd···

pk+1qr ⊇ pk+1q ⊇ pkq ⊇

p
k−1q ⊇

{
· · ·
· · ·

pk ⊇ · · ·

pk+1qr ⊇ pk+1q ⊇ pk+1 ⊇ pk ⊇ pk−1 · · · ⊇ 0

pk+1qr ⊇ pk+1r ⊇ pkr ⊇

p
k−1r ⊇

{
· · ·
· · ·

pk ⊇ · · ·

pk+1qr ⊇ pk+1r ⊇ pk+1 ⊇ pk ⊇ pk−1 · · · ⊇ 0

Figure 4. Maximal chains of pk+1qr

The group G has 3 maximal subgroups H1 = pkqr, H2 = pk+1q and
H3 = pk+1r from which all the maximal chains extend. So we proceed along
these three subgroups.
Case (i) : H1 = Zpk × Zq × Zr

By Proposition 2.1, this subgroup has (k + 2)(k + 1) maximal chains. By the
inductive hypothesis, H1 yields 2k+4 − 1 + (3k + 1) · 2k+3 + k2 · 2k+2 distinct
fuzzy subgroups.
Case (ii) : H2 = Zpk+1 × Zq
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The subgroup H2 has (k+2) maximal chains. It has only 2 chains with a distin-
guishing factor (in the language of [8]), viz. pk+1qr ⊇ pk+1q∗ ⊇ pkq ⊇ pk−1q ⊇
· · · ⊇ pq ⊇ p ⊇ 0 and pk+1qr ⊇ pk+1q ⊇ pk+1∗ ⊇ pk ⊇ · · · ⊇ pq ⊇ p ⊇ 0, which
contribute 2 · 2k+3 distinct fuzzy subgroups. Each of the remaining k maximal
chains along H2 contributes a distinguishing pair. This accounts for k · 2k+2

distinct fuzzy subgroups. Therefore, H2 yields 2 · 2k+3 + k · 2k+2 distinct fuzzy
subgroups G.
Case (iii) : H3 = Zpk+1 × Zr

The subgroup H3 has (k+2) maximal chains and only 1 chain has a distinguish-
ing factor: pk+1qr ⊇ pk+1r∗ ⊇ pk ⊇ pk−1 ⊇ · · · ⊇ p2 ⊇ p ⊇ 0. This contributes
2k+3 distinct fuzzy subgroups the group G. Each of the remaining (k + 1)
maximal chains contribute a distinguishing pair, accounting for (k + 1) · 2k+2

distinct fuzzy subgroups. Thus, H3 yields 2k+3 + (k + 1) · 2k+2 distinct fuzzy
subgroups. Summing up the contributions from case (i)–case (iii), we have

2k+4 − 1 + (3k + 1) · 2k+3 + k2 · 2k+2

+2 · 2k+3 + k · 2k+2

+1 · 2k+3 + (k + 1) · 2k+2

= 2k+4 − 1 + (3k + 4) · 2k+3 + (k2 + 2k + 1) · 2k+2.

Therefore, the number of distinct fuzzy subgroups of Zpk+1 × Zq × Zr is given

by 2k+4 − 1 + [3(k + 1) + 1] · 2k+3 + (k + 1)2 · 2k+2. This can also be obtained
from the formula 2n+3 − 1 + (3n+ 1) · 2n+2 + n2 · 2n+1 with n = k + 1. �

3.2. Distinct fuzzy subgroups of Zpn × Zq2 × Zr

For n = 1, Zp × Zq2 × Zr has 12 maximal chains by Proposition 2.1. From
Figure 5, it is clear that pq2r has 1 · (25−1) + 7 ·24 + 4 ·23 = 175 distinct fuzzy
subgroups.

pq2r ⊇ pqr ⊇ pq ⊇ p ⊇ 0 : 25 − 1

pq2r ⊇ pqr ⊇ pq ⊇ q ⊇ 0 : 24

pq2r ⊇ pqr ⊇ pr ⊇ p ⊇ 0 : 24

pq2r ⊇ pqr ⊇ pr ⊇ r ⊇ 0 : 24

pq2r ⊇ pqr ⊇ qr ⊇ q ⊇ 0 : 24

pq2r ⊇ pqr ⊇ qr ⊇ r ⊇ 0 : 23

⇒
Ctd···

pq2r ⊇ pq2 ⊇ pq ⊇ p ⊇ 0 : 24

pq2r ⊇ pq2 ⊇ pq ⊇ q ⊇ 0 : 23

pq2r ⊇ pq2 ⊇ q2 ⊇ q ⊇ 0 : 24

pq2r ⊇ q2r ⊇ qr ⊇ q ⊇ 0 : 24

pq2r ⊇ q2r ⊇ qr ⊇ r ⊇ 0 : 23

pq2r ⊇ q2r ⊇ q2 ⊇ q ⊇ 0 : 23

Figure 5. Fuzzy subgroups of pq2r

When n = 2, Zp2 × Zq2 × Zr has 30 maximal chains and 1 · (26 − 1) + 12 ·
25 + 15 · 24 + 2 · 23 = 703 distinct fuzzy subgroups (see Figure 6).
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p2q2r ⊇ p2qr ⊇ pqr ⊇ pq ⊇ p ⊇ 0 : 26 − 1

p2q2r ⊇ p2qr ⊇ pqr ⊇ pq ⊇ q ⊇ 0 : 25

p2q2r ⊇ p2qr ⊇ pqr ⊇ pr ⊇ p ⊇ 0 : 25

p2q2r ⊇ p2qr ⊇ pqr ⊇ pr ⊇ r ⊇ 0 : 25

p2q2r ⊇ p2qr ⊇ pqr ⊇ qr ⊇ q ⊇ 0 : 25

p2q2r ⊇ p2qr ⊇ pqr ⊇ qr ⊇ r ⊇ 0 : 24

p2q2r ⊇ p2qr ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 25

p2q2r ⊇ p2qr ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 24

p2q2r ⊇ p2qr ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 25

p2q2r ⊇ p2qr ⊇ p2r ⊇ pr ⊇ p ⊇ 0 : 25

p2q2r ⊇ p2qr ⊇ p2r ⊇ pr ⊇ r ⊇ 0 : 24

p2q2r ⊇ p2qr ⊇ p2r ⊇ p2 ⊇ p ⊇ 0 : 24

p2q2r ⊇ pq2r ⊇ pqr ⊇ pq ⊇ p ⊇ 0 : 25

p2q2r ⊇ pq2r ⊇ pqr ⊇ pq ⊇ q ⊇ 0 : 24

p2q2r ⊇ pq2r ⊇ pqr ⊇ pr ⊇ p ⊇ 0 : 24

⇒
Ctd···

p2q2r ⊇ pq2r ⊇ pqr ⊇ pr ⊇ r ⊇ 0 : 24

p2q2r ⊇ pq2r ⊇ pqr ⊇ qr ⊇ q ⊇ 0 : 24

p2q2r ⊇ pq2r ⊇ pqr ⊇ qr ⊇ r ⊇ 0 : 23

p2q2r ⊇ pq2r ⊇ q2r ⊇ qr ⊇ q ⊇ 0 : 25

p2q2r ⊇ pq2r ⊇ q2r ⊇ qr ⊇ r ⊇ 0 : 24

p2q2r ⊇ pq2r ⊇ q2r ⊇ q2 ⊇ q ⊇ 0 : 25

p2q2r ⊇ pq2r ⊇ pq2 ⊇ pq ⊇ p ⊇ 0 : 25

p2q2r ⊇ pq2r ⊇ pq2 ⊇ pq ⊇ q ⊇ 0 : 24

p2q2r ⊇ pq2r ⊇ pq2 ⊇ p2 ⊇ p ⊇ 0 : 24

p2q2r ⊇ p2q2 ⊇ pq2 ⊇ pq ⊇ p ⊇ 0 : 25

p2q2r ⊇ p2q2 ⊇ pq2 ⊇ pq ⊇ q ⊇ 0 : 24

p2q2r ⊇ p2q2 ⊇ pq2 ⊇ q2 ⊇ q ⊇ 0 : 24

p2q2r ⊇ p2q2 ⊇ p2q ⊇ pq ⊇ p ⊇ 0 : 24

p2q2r ⊇ p2q2 ⊇ p2q ⊇ pq ⊇ q ⊇ 0 : 23

p2q2r ⊇ p2q2 ⊇ p2q ⊇ p2 ⊇ p ⊇ 0 : 24

Figure 6. Fuzzy subgroups of p2q2r

This process can similarly be extended to p3q2r, p4q2r, . . . , p7q2r to get the
results of Table 2.

Table 2. Fuzzy subgroups of Zpn × Zq2 × Zr

n pnq2r Number of fuzzy subgroups

1 pq2r 175 = 1 · (25 − 1) + 7 · 24 + 4 · 23
2 p2q2r 703 = 1 · (26 − 1) + 12 · 25 + 15 · 24 + 2 · 23
3 p3q2r 2415 = 1 · (27 − 1) + 17 · 26 + 33 · 25 + 9 · 24
4 p4q2r 7551 = 1 · (28 − 1) + 22 · 27 + 58 · 26 + 24 · 25
5 p5q2r 22143 = 1 · (29 − 1) + 27 · 28 + 90 · 27 + 50 · 26
6 p6q2r 61951 = 1 · (210 − 1) + 32 · 29 + 129 · 28 + 90 · 27
7 p7q2r 167167 = 1 · (211 − 1) + 37 · 210 + 175 · 29 + 147 · 28
...

...
...

k pkq2r 2k+4 − 1 + (2 + 5k) · 2k+3 +
(

7k2+k
2

)
· 2k+2 +

[
k2(k−1)

2

]
· 2k+1

This discussion suggests that the number of distinct fuzzy subgroups of the

finite abelian group pnq2r is 2n+4 − 1 + (5n + 2) · 2n+3 +
(

7n2+n
2

)
· 2n+2 +[

n2(n−1)
2

]
· 2n+1, which we state in Proposition 3.2.

Proposition 3.2. The number of distinct fuzzy subgroups of the group Zpn ×
Zq2 × Zr is

2n+4 − 1 + (5n+ 2) · 2n+3 +

(
7n2 + n

2!

)
· 2n+2 +

[
n2(n− 1)

2!

]
· 2n+1.
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Proof. We proceed inductively on n. When n = 1, Zp×Zq2×Zr
∼= Zp2×Zq×Zr

has 25 − 1 + 7 · 24 + 4 · 23 distinct fuzzy subgroups by Proposition 3.1. This
number can clearly be obtained by the substitution of n = 1 in the formula of
Proposition 3.2.

Suppose the result holds for n = k, i.e., Zpk×Zq2×Zr has 2k+4−1+(5k+2)·
2k+3 + 7k2+k

2! · 2k+2 + k2(k−1)
2! · 2k+1 distinct fuzzy subgroups. We need to show

that G = Zpk+1 ×Zq2 ×Zr has 2k+5− 1 + [(5(k+ 1) + 2] · 2k+4 + 7(k+1)2+(k+1)
2! ·

2k+3 + (k+1)2k
2! · 2k+2 distinct fuzzy subgroups. The group G has 3 maximal

subgroups H1 = pkq2r, H2 = pk+1qr and H3 = pk+1q2 through which all the

maximal chains of G pass. These (k+r+3)!
(k+1)!r!2! chains are sketched below:

pk+1q2r ⊇ pkq2r ⊇


· · ·
· · ·
· · ·

,

pk+1q2r ⊇ pk+1qr ⊇


· · ·
· · ·
· · ·

and

pk+1q2r ⊇ pk+1q2 ⊇

{
· · ·
· · ·

Case (i) : H1 = Zpk × Zq2 × Zr

By the inductive hypothesis, H1 has 2k+5− 1 + (5k+ 2) · 2k+4 + 7k2+k
2! · 2k+3 +

k2(k−1)
2! · 2k+2 distinct fuzzy subgroups

Case (ii) : H2 = Zpk+1 × Zq × Zr

There are 4 maximal chains with a distinguishing factor along this subgroup
illustrated in Figure 7.

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ pk−2qr ⊇ · · · ⊇ pqr ⊇ pq ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1q∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p2q ⊇ pq ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1q ⊇ pk+1∗ ⊇ pk−1 ⊇ · · · ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1r∗ ⊇ pkr ⊇ pk−1r ⊇ · · · ⊇ p2r ⊇ pr ⊇ p ⊇ 0

Figure 7. Maximal chains of H2 = pk+1qr with a distin-
guishing factor

The subgroup H2 has 5 clusters shown in Figures 8–12 which have respec-
tively k, k, (k + 1), k, (k + 1) maximal chains with a distinguishing pair.
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pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p2qr ⊇ pqr ⊇ pq∗∗ ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p2qr ⊇ p2q∗∗ ⊇ pq ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p3q∗∗ ⊇ p2q ⊇ pq ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pkq∗∗ ⊇ pk−1q ⊇ · · · ⊇ p3q ⊇ p2q ⊇ pq ⊇ p ⊇ 0

Figure 8. First cluster of k chains of H2 = pk+1qr with a
distinguishing pair

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p2qr ⊇ pqr ⊇ pr∗∗ ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p2qr ⊇ p2r∗∗ ⊇ pr ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p3r∗∗ ⊇ p2r ⊇ pr ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pkr∗∗ ⊇ pk−1r ⊇ · · · ⊇ p3r ⊇ p2r ⊇ pr ⊇ p ⊇ 0

Figure 9. Second cluster of k chains of H2 = pk+1qr with a
distinguishing pair

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p2qr ⊇ pqr ⊇ qr∗∗ ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p2qr ⊇ pqr ⊇ qr ⊇ r∗∗ ⊇ 0

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p2qr ⊇ p2q ⊇ p2
∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p3qr ⊇ p3q ⊇ p3
∗∗
⊇ p2 ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pkq ⊇ pk
∗∗
⊇ pk−1 · · · ⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 10. Third cluster of k+1 chains of H2 = pk+1qr with
a distinguishing pair

pk+1q2r ⊇ pk+1qr ⊇ pk+1q∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p3q ⊇ p2q ⊇ pq ⊇ q∗∗ ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1q∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p3q ⊇ p2q ⊇ p2
∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1q∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p3q ⊇ p3
∗∗
⊇ p2 ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1qr ⊇ pk+1q∗ ⊇ pkq ⊇ pk
∗∗
⊇ pk−1 ⊇ · · · ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 11. Fourth cluster of k chains of H2 = pk+1qr with a
distinguishing pair
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pk+1q2r ⊇ pk+1qr ⊇ pk+1r∗ ⊇ pkr ⊇ pk−1r ⊇ · · · ⊇ p3r ⊇ p2r ⊇ pr ⊇ r∗∗ ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1r∗ ⊇ pkr ⊇ pk−1r ⊇ · · · ⊇ p3r ⊇ p2r ⊇ p2
∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1r∗ ⊇ pkr ⊇ pk−1r ⊇ · · · ⊇ p3r ⊇ p3
∗∗
⊇ p2 ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1qr ⊇ pk+1r∗ ⊇ pkr ⊇ pk
∗∗
⊇ pk−1 ⊇ · · · ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1qr ⊇ pk+1r∗ ⊇ pk+1∗∗ ⊇ pk ⊇ pk−1 ⊇ · · · ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 12. Fifth cluster of k+ 1 chains of H2 = pk+1qr with
a distinguishing pair

From these 5 clusters, we have that H2 has a total of (5k+2) maximal chains
with a distinguishing pair.

Similarly, H2 has clusters of chains with a distinguishing triple. Each of
these clusters has k chains which we enumerate as follows: The first cluster has
chains ending with pr ⊇ r ⊇ 0, the second ends with pq ⊇ q ⊇ 0, the third,
p2 ⊇ p ⊇ 0, the fourth, p3 ⊇ p2 ⊇ p ⊇ p ⊇ 0 and so on, with the last cluster
comprising of chains ending with pk−1 ⊇ pk−2 ⊇ · · · ⊇ p2 ⊇ p ⊇ p ⊇ 0. This
gives a total of k clusters. Hence H2 has k2 maximal chains with a distinguish-
ing triple.
Case (iii) : H3 = Zpk+1 × Zq2

There is only 1 maximal chain with a distinguishing factor through this sub-
group. This is the chain pk+1q2r ⊇ pk+1q2

∗ ⊇ pkq2 ⊇ pk−1q2 ⊇ pk−2q2 ⊇ · · · ⊇
pq2 ⊇ pq ⊇ p ⊇ 0. Extending through H3, we have 2 clusters of maximal chains
with a distinguishing pair. The first cluster (in Figure 13) has (k+ 2) maximal
chains. The second cluster has k maximal chains from Figure 14. Therefore,
the subgroup H3 yields 2k + 2 maximal chains with a distinguishing pair.

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ pk−2q2 ⊇ · · · ⊇ p2q2 ⊇ pq2 ⊇ pq ⊇ q∗∗ ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ pk−2q2 ⊇ · · · ⊇ p2q2 ⊇ pq2 ⊇ q2

∗∗
⊇ q ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ pk−2q2 ⊇ · · · ⊇ p2q2 ⊇ p2q∗∗ ⊇ pq ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ · · · ⊇ p3q2 ⊇ p3q∗∗ ⊇ p2q ⊇ pq ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pkq∗∗ ⊇ pk−1q ⊇ · · · ⊇ p3q ⊇ p2q ⊇ pq ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p3q ⊇ p2q ⊇ pq ⊇ p ⊇ 0

Figure 13. First cluster of k+ 2 chains of H3 = pk+1q2 with
a distinguishing pair
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pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p3q2 ⊇ p2q2 ⊇ p2q∗∗ ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p3q2 ⊇ p3q∗∗ ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p4q∗∗ ⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pkq∗∗ ⊇ pk ⊇ pk−1 ⊇ pk−2 ⊇ · · · ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pk+1 ⊇ pk ⊇ pk−1 ⊇ pk−2 ⊇ · · · ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 14. Second cluster of k chains of H3 = pk+1q2 with
a distinguishing pair

Next we look at the maximal chains throughH3 contributing a distinguishing
triple. Following similar criteria, we have two major clusters of maximal chains
with specific patterns. The first cluster has k (Figure 15) maximal chains
with a distinguishing triple. All of these first cluster maximal chains end with
pq ⊇ q ⊇ 0. The second cluster consists of maximal chains ending with p2 ⊇
p ⊇ 0 and is broken down into subclusters in Figures 16–19. So far, the first,
second, third and fourth subclusters have respectively 3, 3, 4 and 5 maximal
chains. Similarly the fifth, sixth and seventh (which we have not included here)
subclusters have respectively 6, 7, and 8 maximal chains. In total there are
(k − 2) subclusters and the last subcluster, shown in Figure 20 has (k − 1)
maximal chains.

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2

∗∗
⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p3q2 ⊇ p2q2 ⊇ p2q∗∗∗ ⊇ pq ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2

∗∗
⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p3q2 ⊇ p3q∗∗∗ ⊇ p2q ⊇ pq ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2

∗∗
⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p4q∗∗∗ ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2

∗∗
⊇ pk−1q2 ⊇ · · · ⊇ p5q2 ⊇ p5q∗∗∗ ⊇ p4q ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2

∗∗
⊇ pk−1q2 ⊇ pk−1q∗∗∗ ⊇ · · · ⊇ p5q ⊇ p4q ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2

∗∗
⊇ pkq∗∗∗ ⊇ pk−1q ⊇ · · · ⊇ p5q ⊇ p4q ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq∗∗∗ ⊇ pk−1q ⊇ · · · ⊇ p5q ⊇ p4q ⊇ p3q ⊇ p2q ⊇ pq ⊇ q ⊇ 0

Figure 15. First cluster of k chains of H3 = pk+1q2 with a
distinguishing triple

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p3q2 ⊇ p3q∗∗ ⊇ p2q ⊇ p2 ⊇ p∗∗∗ ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p4q∗∗ ⊇ p3q ⊇ p2q ⊇ p2

∗∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ pk−1q2 ⊇ · · · ⊇ p4q2 ⊇ p4q∗∗ ⊇ p3q ⊇ p3

∗∗∗
⊇ p2 ⊇ p ⊇ 0

Figure 16. First subcluster in second cluster of 3 chains of
H3 = pk+1q2 with a distinguishing triple
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pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ · · · ⊇ p5q2 ⊇ p5q∗∗ ⊇ p4q ⊇ p3q ⊇ p2q ⊇ p2

∗∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ · · · ⊇ p5q2 ⊇ p5q∗∗ ⊇ p4q ⊇ p3q ⊇ p3

∗∗∗
⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ · · · ⊇ p5q2 ⊇ p5q∗∗ ⊇ p4q ⊇ p4

∗∗∗
⊇ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 17. Second subcluster in second cluster of 3 chains of
H3 = pk+1q2 with a distinguishing triple

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ · · · ⊇ p6q2 ⊇ p6q∗∗ ⊇ p5q ⊇ p4q ⊇ p3q ⊇ p2q ⊇ p2

∗∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ · · · ⊇ p6q2 ⊇ p6q∗∗ ⊇ p5q ⊇ p4q ⊇ p3q ⊇ p3

∗∗∗
⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ · · · ⊇ p6q2 ⊇ p6q∗∗ ⊇ p5q ⊇ p4q ⊇ p4

∗∗∗
⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pkq2 ⊇ · · · ⊇ p6q2 ⊇ p6q∗∗ ⊇ p5q ⊇ p5

∗∗∗
⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 18. Third subcluster in second cluster of 4 chains of
H3 = pk+1q2 with a distinguishing triple

pk+1q2r ⊇ pk+1q2
∗
⊇ · · · ⊇ p7q2 ⊇ p7q∗∗ ⊇ p6q ⊇ p5q ⊇ p4q ⊇ p3q ⊇ p2q ⊇ p2

∗∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ · · · ⊇ p7q2 ⊇ p7q∗∗ ⊇ p6q ⊇ p5q ⊇ p4q ⊇ p3q ⊇ p3

∗∗∗
⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ · · · ⊇ p7q2 ⊇ p7q∗∗ ⊇ p6q ⊇ p5q ⊇ p4q ⊇ p4

∗∗∗
⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ · · · ⊇ p7q2 ⊇ p7q∗∗ ⊇ p6q ⊇ p5q ⊇ p5

∗∗∗
⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ · · · ⊇ p7q2 ⊇ p7q∗∗ ⊇ p6q ⊇ p6

∗∗∗
⊇ p5 ⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 19. Fourth subcluster in second cluster of 5 chains of
H3 = pk+1q2 with a distinguishing triple

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p5q ⊇ p4q ⊃ p3q ⊇ p2q ⊇ p2

∗∗∗
⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p5q ⊇ p4q ⊃ p3q ⊇ p3

∗∗∗
⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p5q ⊇ p4q ⊃ p4

∗∗∗
⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq ⊇ pk−1q ⊇ · · · ⊇ p5q ⊇ p5

∗∗∗
⊇ p4 ⊃ p3 ⊇ p2 ⊇ p ⊇ 0

...
...

...

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq ⊇ pk−1q ⊇ pk−1∗∗∗ ⊇ · · · ⊇ p5 ⊇ p4 ⊃ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q2r ⊇ pk+1q2
∗
⊇ pk+1q∗∗ ⊇ pkq ⊇ pk

∗∗∗
⊇ pk−1 ⊇ · · · ⊇ p5 ⊇ p4 ⊃ p3 ⊇ p2 ⊇ p ⊇ 0

Figure 20. The k− 2nd subcluster in second cluster of k− 1
chains of H3 = pk+1q2 with a distinguishing triple

The number of maximal chains in the subclusters of the second cluster is
summarized in Table 3.
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Table 3. Maximal chains of H3 = pm+1q2 with a distinguish-
ing triple in each subcluster of the second cluster

HH
HHHS-cl

m
3 4 5 6 7 8 · · · k

1 3 3 3 3 3 3 · · · 3
2 3 3 3 3 3 · · · 3
3 4 4 4 4 · · · 4
4 5 5 5 · · · 5
5 6 6 · · · 6
6 7 · · · 7
...

. . .
...

k − 2 k − 1

In Table 3, S-cl means subcluster. When m = k, each of the first two
subclusters has 3 maximal chains. From the third subcluster onwards, the
number of chains form an arithmetic sequence 4, 5, 6, 7, 8, . . . , (k − 1). This
sequence has k − 4 terms with the first term a = 4, common difference d = 1
and last term l = k − 1. Thus, the number of maximal chains from the third

subcluster is Sn = n
2 (a + l) = (k−4)(k+3)

2 . Therefore the total number of

maximal chains with a distinguishing triple contributed by H3 is (k−4)(k+3)
2! +

(6 + k) = k(k+1)
2! .

Summing up the contributions from case (i)-case (iii), we get 2k+5−1+(5k+

7) ·2k+4+ 7k2+15k+8
2! ·2k+3+ k(k2+2k+1)

2! ·2k+2. Hence the group Zpk+1×Zq2×Zr

has 2k+5+[(5(k+1)+2)+2] ·2k+4+ 7(k+1)2+(k+1)
2! ·2k+3+ (k+1)2k

2! ·2k+2 distinct
fuzzy subgroups. This result can also be obtained by substituting n = k+ 1 in

the formula 2n+4− 1 + (5n+ 2) · 2n+3 +
(

7n2+n
2!

)
· 2n+2 +

[
n2(n−1)

2!

]
· 2n+1. �

3.3. Distinct fuzzy subgroups of Zpn × Zq3 × Zr

As in Subsections 3.1 and 3.2, distinct fuzzy subgroups for various values of
n and q = 3 fixed were computed. The results are reflected in Table 4.

Table 4. Fuzzy subgroups of Zpn × Zq3 × Zr

n pnq3r Number of fuzzy subgroups

1 pq3r 527 = 1 · (26 − 1) + 10 · 25 + 9 · 24
2 p2q3r 2415 = 1 · (27 − 1) + 17 · 26 + 33 · 25 + 9 · 24
3 p3q3r 9263 = 1 · (28 − 1) + 24 · 27 + 72 · 26 + 40 · 25 + 3 · 24
4 p4q3r 31871 = 1 · (29 − 1) + 31 · 28 + 126 · 27 + 106 · 26 + 16 · 25
5 p5q3r 101759 = 1 · (210 − 1) + 38 · 29 + 195 · 28 + 220 · 27 + 50 · 26
6 p6q3r 307445 = 1 · (211 − 1) + 45 · 210 + 279 · 29 + 395 · 28 + 120 · 27
7 p7q3r 890111 = 1 · (212 − 1) + 52 · 211 + 378 · 210 + 644 · 29 + 245 · 28
...

...
...

k pkq3r 2k+5−1+(7k+3)·2k+4+ 3(5k2+k)
2 ·2k+3+(2k3−k2−2k+2)·2k+2+ k4−2k3−4k2+11k−6

3! ·
2k+1
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The intricacies involved in the construction of the above table are unpacked
in the following proposition.

Proposition 3.3. The number of distinct fuzzy subgroups of the group Zpn ×
Zq3 ×Zr is 2n+5− 1 + (7n+ 3) · 2n+4 + (15n2+3n)

2! · 2n+3 + (13n2+n)(n−1)
3! · 2n+2 +

n2(n−1)(n−2)
3! · 2n+1.

Proof. The proof is by induction on n. When n = 1, Zp × Zq3 × Zr
∼= Zp3 ×

Zq × Zr has 26 − 1 + 10 · 25 + 9 · 24 distinct fuzzy subgroups by Proposition
3.1 and 1 of Table 4 . This can also be obtained by substituting n = 1 in
Proposition 3.3. Similarly, when n = 2, Zp2 × Zq3 × Zr

∼= Zp3 × Zq2 × Zr has
27− 1 + 17 · 26 + 33 · 25 + 9 · 24 distinct fuzzy subgroups by Proposition 3.2 and
2 of Table 4.

Suppose the group Zpk ×Zq3 ×Zr has 2k+5− 1 + (7k+ 3) · 2k+4 + (15k2+3k)
2! ·

2k+3 + (13k2+k)(k−1)
3! · 2k+2 + k2(k−1)(k−2)

3! · 2k+1 distinct fuzzy subgroups. We

need to show that the group G = Zpk+1 × Zq3 × Zr has 2k+6 − 1 + [7(k + 1) +

3] · 2k+5 + 15(k+1)2+3(k+1)
2! · 2k+4 + [13(k+1)2+(k+1)]k

3! · 2k+3 + (k+1)2k(k−1)
3! · 2k+2

distinct fuzzy subgroups.
The group G has 3 maximal subgroups H1 = Zpk ×Zq3 ×Zr, H2 = Zpk+1 ×

Zq2 × Zr and H3 = Zpk+1 × Zq3 through which all maximal chains of G pass.
These maximal chains are sketched as

pk+1q3r ⊇ pkq3r ⊇


· · ·
· · ·
· · ·

, pk+1q3r ⊇ pk+1q2r ⊇


· · ·
· · ·
· · ·

and

pk+1q3r ⊇ pk+1q3 ⊇

{
· · ·
· · ·

As in Proposition 3.1–3.2, we first proceed along these three subgroups to find
the number of chains with a distinguishing factor, a distinguishing pair and
a distinguishing triple. Then in the fourth case, we look at the number of
maximal chains with a distinguishing quadruple in both H2 and H3.
Case (i): H1 = Zpk × Zq3 × Zr

By the inductive hypothesis, H1 has 2k+6 − 1 + (7k + 3) · 2k+5 + (15k2+3k)
2! ·

2k+4 + (13k2+k)(k−1)
3! · 2k+3 + k2(k−1)(k−2)

3! · 2k+2 distinct fuzzy subgroups since
maximal chains of G have length k + 6.
Case (ii): H2 = Zpk+1 × Zq2 × Zr

The subgroup H2 has 6 maximal chains in Figure 21 with a distinguishing
factor.
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pk+1q3r ⊇ pk+1q2r∗ ⊇ pkq2r ⊇ pk−1q2r ⊇ pk−2q2r ⊇ · · · ⊇ pq2r ⊇ pqr ⊇ pq ⊇ p ⊇ 0

pk+1q3r ⊇ pk+1q2r ⊇ pk+1qr∗ ⊇ pkqr ⊇ pk−1qr ⊇ · · · ⊇ p2qr ⊇ pqr ⊇ pq ⊇ p ⊇ 0

pk+1q3r ⊇ pk+1q2r ⊇ pk+1qr ⊇ pk+1q∗ ⊇ pkq ⊇ · · · ⊇ p3q ⊇ p2q ⊇ pq ⊇ p ⊇ 0

pk+1q3r ⊇ pk+1q2r ⊇ pk+1qr ⊇ pk+1q ⊇ pk+1∗ ⊇ · · · ⊇ p4 ⊇ p3 ⊇ p2 ⊇ p ⊇ 0

pk+1q3r ⊇ pk+1q2r ⊇ pk+1qr ⊇ pk+1r ⊇ pkr∗ ⊇ · · · ⊇ p3r ⊇ p2r ⊇ pr ⊇ p ⊇ 0

pk+1q3r ⊇ pk+1q2r ⊇ pk+1q2 ⊇ pkq2 ⊇ pk−1q2
∗
⊇ · · · ⊇ p2q2 ⊇ pq2 ⊇ pq ⊇ p ⊇ 0

Figure 21. Maximal chains of H2 = pk+1q2r with a distin-
guishing factor

The subgroup H2 has 7 clusters of maximal chains with a distinguishing pair.
The process of enumerating these chains follows a similar technique as shown
in the proof for Proposition 3.2. Therefore, we simply state the representative
of each cluster and the number of chains therein.

The first and second clusters consist respectively of chains ending with pq ⊇
p ⊇ 0 and p2 ⊇ p ⊇ 0 and each cluster has (5k− 3) maximal chains. The third
cluster has 4 chains ending with pq ⊇ q ⊇ 0. The fourth and fifth clusters’
chains end respectively with pr ⊇ r ⊇ 0 and qr ⊇ q ⊇ 0 and each has 3 chains.
The sixth cluster has 2k chains all of which end with pr ⊇ p ⊇ 0; the seventh
cluster has 2 chains both of which end with q2 ⊇ q ⊇ 0. These 7 clusters give
a total of 2(5k− 3) + 4 + 6 + 2 = (12k+ 6) maximal chains through H2 with a
distinguishing pair.

For maximal chains with a distinguishing triple, the subgroups p2q2r, p3q2r,
p4q2r, p5q2r, . . . have 6, 22, 48, 84, . . . maximal chains respectively. Therefore,
as k increases, the number of chains for pk+1q2r with a distinguishing triple
exhibits a quadratic sequence. The nth term of the sequence is given by Tn =
an2+bn+c, where 2a = first term, 3a+b = first term of the first difference row
and 2a = second term. This sequence is illustrated in Figure 22(A).

6 22 48 84 · · ·︸︷︷︸
16

︸︷︷︸
16

︸︷︷︸
36︸︷︷︸

10

︸︷︷︸
10

(a) Triples for H2 = pk+1q2r

2 7 15 26 · · ·︸︷︷︸
5

︸︷︷︸
8

︸︷︷︸
11︸︷︷︸

3

︸︷︷︸
3

(b) Quadruples for H2 = pk+1q2r
and H3 = pk+1q3

Figure 22. Distinguishing triples and quadruples

We therefore have the system 2a = 10, 3a + b = 16 and a + b + c = 6,
whose solution is a = 5, b = 1 and c = 0. For our sequence, n = k, implying
that Tk = 5k2 + k = k(5k + 1) is the number of maximal chains in H2 with a
distinguishing triple.
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Case (iii): H3 = Zpk+1 × Zq3

There is 1 maximal chain passing through H3 with a distinguishing factor. This
is the chain pk+1q3r ⊇ pk+1q3

∗ ⊇ pkq3 ⊇ pk−1q3 ⊇ · · · ⊇ p2q3 ⊇ pq3 ⊇ pq2 ⊇
pq ⊇ p ⊇ 0.

The subgroup H3 has 4 clusters of maximal chains with a distinguishing
pair. The first cluster has all its maximal chains ending with pq ⊇ p ⊇ 0 and
has 2k such chains. The second and third clusters’ maximal chains end with
pq ⊇ q ⊇ 0 and q2 ⊇ q ⊇ 0 respectively and have respectively 1 and 2 maximal
chain(s). The fourth cluster consists of k maximal chains all of which end with
p2 ⊇ p ⊇ 0. These 4 clusters contribute a total of (3k + 3) maximal chains

with a distinguishing pair. Similarly, H3 has k(3k+3)
2! maximal chains with a

distinguishing triple.
Case (iv): Quadruples in both H2 and H3

Lastly, we look at the number of chains with a distinguishing quadruple con-
tributed by H2 and H3 combined. This last category has four clusters. The
first cluster has (k − 1) maximal chains all of which end with qr ⊇ r ⊇ 0. The
second cluster consists of chains ending with pr ⊇ r ⊇ 0. The number of chains
with a distinguishing quadruple in this cluster for the groups p3q3r, p4q3r,
p5q3r, p6q3r, p7q3r, . . ., is 1, 3, 6, 10, 15, . . ., respectively. This is a sequence

of triangular numbers whose n-th term is given by Tn − n(n+1)
2! . In our case,

n = k − 2. Therefore, the second cluster has Tk−2 = (k−1)(k−2)
2! chains.

The third cluster has chains ending with pq ⊇ q ⊇ 0. The number of
chains in this cluster for the groups p3q3r, p4q3r, p5q3r, p6q3r, . . ., is 2, 7,
15, 26, . . . respectively. This is a sequence of quadratic numbers as shown
in Figure 22(B). In our case, n = k − 1 thus we have 2a = 3, 3a + b = 5
and a + b + c = 2. Solving this system gives a = 3

2 , b = 1
2 and c = 0.

So Tn = 3
2n

2 + 1
2n = n(3n+1)

2! and therefore, the third cluster has Tk−1 =
(k−1)[3(k−1)+1]

2! = (k−1)(3k−2)
2! maximal chains. The fourth cluster consists of

chains (k−1)(k−2)(4k−3)
3! all of which end with p2 ⊇ p ⊇ 0. The sum from this

case yields (k− 1) + (k−1)(k−2)
2! + (k−1)(3k−2)

2! + (k−1)(k−2)(4k−3)
3! = k(k−1)(4k+1)

3!
maximal chains.

Summing up the contributions from case (i)–case (iv), we get [2k+6 − 1 +

(7k+3)·2k+5+ (15k2+3k)
2! ·2k+4+ (13k2+k)(k−1)

3! ·2k+3+ k2(k−1)(k−2)
3! ·2k+2]+[6+1]·

2k+5+[(12k+6)+(3k+3)]·2k+4+[k(5k+1)+ k(3k+3)
2! ]·2k+3+[k(k−1)(4k+1)

3! ]·2k+2.

Therefore G has 2k+6 − 1 + [7(k + 1) + 3] · 2k+5 + 15(k+1)2+3(k+1)
2! · 2k+4 +

[13(k+1)2+(k+1)]k
3! · 2k+3 + (k+1)2k(k−1)

3! · 2k+2 distinct fuzzy subgroups. This can

also be obtained by substituting n = k + 1 in 2n+5 − 1 + (7n + 3) · 2n+4 +
(15n2+3n)

2! ·2n+3 + (13n2+n)(n−1)
3! ·2n+2 + n2(n−1)(n−2)

3! ·2n+1. This completes the
proof. �
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4. Conclusion

Using the criss-cut method, this paper has discussed and given in polynomial
formulas the number of distinct fuzzy subgroups of Zpn ×Zqm ×Zr for n, m ∈
Z+ for the cases m = 1, 2, 3. An immediate question in extending this work
would be to get general results for all value of m in Zpn×Zqm×Zr. One would
also extend this work to the group Zpn ×Zqm ×Zrs , n, m ∈ Z+. This forms a
basis of our next research and paper in the future.
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