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ON TOPOLOGICAL ENTROPY AND TOPOLOGICAL

PRESSURE OF NON-AUTONOMOUS ITERATED

FUNCTION SYSTEMS

Fatemeh H. Ghane and Javad Nazarian Sarkooh

Abstract. In this paper we introduce the notions of topological entropy
and topological pressure for non-autonomous iterated function systems

(or NAIFSs for short) on countably infinite alphabets. NAIFSs differ from

the usual (autonomous) iterated function systems, they are given [32] by
a sequence of collections of continuous maps on a compact topological

space, where maps are allowed to vary between iterations. Several basic
properties of topological pressure and topological entropy of NAIFSs are

provided. Especially, we generalize the classical Bowen’s result to NAIFSs

ensures that the topological entropy is concentrated on the set of nonwan-
dering points. Then, we define the notion of specification property, under

which, the NAIFSs have positive topological entropy and all points are

entropy points. In particular, each NAIFS with the specification prop-
erty is topologically chaotic. Additionally, the ∗-expansive property for

NAIFSs is introduced. We will prove that the topological pressure of any

continuous potential can be computed as a limit at a definite size scale
whenever the NAIFS satisfies the ∗-expansive property. Finally, we study

the NAIFSs induced by expanding maps. We prove that these NAIFSs

having the specification and ∗-expansive properties.

1. Introduction

The time dependent systems so-called non-autonomous, yield very flexible
models than autonomous cases for the study and description of real world pro-
cesses. They may be used to describe the evolution of a wider class of phenom-
ena, including systems which are forced or driven. Non-autonomous dynamical
systems are strongly motivated from applications, e.g., in population biology
[31] as well as applications to numerical approximations, switching systems [23]
and synchronization [22]. Here, we deal with non-autonomous iterated function
systems (or NAIFSs for short) which differ from the usual (autonomous) iter-
ated function systems. It is natural, and frequently necessary in applications,

Received November 21, 2018; Revised April 25, 2019; Accepted May 14, 2019.
2010 Mathematics Subject Classification. 37B55, 37B40, 37D35.
Key words and phrases. non-autonomous iterated function system, topological entropy,

topological pressure, entropy point, specification property, nonwandering point.

c©2019 Korean Mathematical Society

1561



1562 F. H. GHANE AND J. NAZARIAN SARKOOH

to consider the non-autonomous version of iterated function systems, where the
system is allowed to vary at each time. (In the case where all maps are affine
similarities, the resulting system is also called a Moran set construction [32].)
Generalized Cantor sets that studied by Robinson and Sharples [33] are exam-
ples of attractors of NAIFSs. Olson et al. [27] illustrate examples of pullback
attractors. A pullback attractor serves as non-autonomous counterpart to the
global attractor. Henderson et al. [19], extended the regularity results of [27] to
a natural class of attractors of both autonomous and non-autonomous iterated
functions systems of contracting similarities, and studied the Assouad, box-
counting, Hausdorff and packing dimensions for the attractors of these class
of dynamical systems. These regularity results are useful as pullback attrac-
tors can exhibit dimensionally different behaviour at different length scales.
Rempe-Gillen and Urbański [32] studied the Hausdorff dimension of the limit
set of NAIFSs. Under a suitable restriction on the growth of the number of
contractions used at each step, they showed that the Hausdorff dimension of
the limit set is determined by an equation known as Bowen’s formula. Also,
they proved Bowen’s formula for a class of infinite alphabet systems and deal
with Hausdorff measures for finite systems, as well as continuity of topological
pressure and Hausdorff dimension for both finite and infinite systems. In par-
ticular they strengthened the existing continuity results for infinite autonomous
systems.

In general, an NAIFS generalizes the both concepts of finitely generated
semigroups and non-autonomous discrete dynamical systems. Recently, there
have been major efforts in establishing a general theory of NAIFSs [19, 32],
but a global theory is still out of reach. Our main goal in this paper is to
describe the topological aspects of thermodynamic formalism for NAIFSs. To
our knowledge, the thermodynamic formalism of such systems (NAIFSs) have
not been studied before. From a conceptual point of view, an interesting aspect
of these studies is the fact that the fundamental notions of thermodynamic
formalism, like topological entropy and topological pressure, come up naturally
in our context. However, an extension of the thermodynamical formalism for
NAIFSs has revealed fundamental difficulties.

Thermodynamic formalism, i.e., the formalism of equilibrium statistical
physics, was adapted to the theory of dynamical systems in the classical works
of Sinai, Ruelle and Bowen [11,12,36,38]. Topological pressure and topological
entropy are two fundamental notions in thermodynamic formalism. Topological
pressure is the main tool in studying dimension of invariant sets and measures
for dynamical systems in dimension theory. On the other hand, the notion of
entropy is one of the most important objects in dynamical systems, either as
a topological invariant or as a measure of the chaoticity of dynamical systems.
Hence, there were several attempts to find their generalization for other sys-
tems in an attempt to describe their dynamical characteristics, see, for instance,
[20,21,24,25,41,46].
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The concept of topological entropy of a map plays a central role in topo-
logical dynamics. There are two standard definitions of topological entropy
for a continuous self-map of a compact metric space [18]. The first definition
was given by Adler, Konhelm and McAndrew [1], based on open covers, can
be applied to continuous maps of any compact topological space. In 1971,
Bowen [9] and Dinaburg [14] gave other definitions, based on the dispersion of
orbits, for uniformly continuous maps in metric spaces. When the metric space
is compact, these definitions yield the same quantity, which is an invariant of
topological conjugacy. Also, Bowen [10] gave a characterization of dimension
type for topological entropy of non-compact and non-invariant sets. Topologi-
cal entropy has close relationships with many important dynamical properties,
such as chaos, Lyapunov exponents, the growth of the number of periodic
points and so on. Moreover, positive topological entropy has remarkable role
in the characterization of the dynamical behaviors, for instance, Downarowicz
proved that positive topological entropy implies chaos DC2 [15]. Thus, a lot
of attention has been focused on computations and estimations of topological
entropy of an autonomous dynamical system and many good results have been
obtained [6, 8, 9, 17]. Beyond autonomous dynamical systems, several authors
provided conditions for computations and estimations of topological entropy,
for instance, Shao et al. [37] have given an estimation of lower bound of topo-
logical entropy for coupled-expanding systems associated with transition ma-
trices in compact Hausdorff spaces. Some knowledge of topological entropy of
semigroup actions is also available in [3, 5, 34].

The notion of specification was introduced in the seventies as a property of
uniformly hyperbolic basic pieces and became a characterization of complexity
in dynamical systems. Rodrigues and Varandas [34] introduced some notions
of specification for semigroup actions and proved that any finitely generated
continuous semigroup action on a compact metric space with the strong orbital
specification property has positive topological entropy; moreover, every point
is an entropy point. Roughly speaking, entropy points are those that their local
neighborhoods reflect the complexity of the entire dynamical system from the
viewpoint of entropy theory. Also, these results extended to non-autonomous
discrete dynamical systems [26]. In the current paper, we generalize the con-
cepts of specification and topological entropy to NAIFSs and investigate the
relation between the specification property, topological entropy and topologi-
cal chaocity of NAIFSs. Furthermore, a class of examples of NAIFSs is given
where the specification property holds.

The notion of topological pressure, using separated sets, was brought to the
theory of dynamical systems by Ruelle [35], later other definitions of topological
pressure, based on open covers and spanning sets, were given by Walters [44]
and it was further developed by Pesin and Pitskel [30]. Pesin [29] used the
dimension approach to the notion of topological pressure, which is based on the
Caratheodory structure. Recently, there were several attempts to find suitable
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generalizations for other systems, see, for instance, [21] for non-autonomous
discrete dynamical systems and [25,34] for semigroup actions.

It is well-known that the topological pressure can be computed as the lim-
iting complexity of the dynamical system as the size scale approaches zero.
Thus, several authors provided conditions so that the topological pressure of
a dynamical system can be computed as a limit at a definite size scale. For
instance, Rodrigues and Varandas [34] showed that the topological pressure of
any continuous potential that satisfies the bounded distortion condition can be
computed as a limit at a definite size scale for any finitely generated continuous
semigroup action on a compact metric space with some kind of expansive prop-
erty. Also, this result extended to non-autonomous discrete dynamical systems
by Nazarian Sarkooh and Ghane [26]. In addition to generalizing the concept
of topologival pressure to NAIFSs, one of the central objective of this paper is
to extend this result to NAIFSs.

The paper is organized as follows. In Section 2, we give the precise defini-
tion of an NAIFS and present an overview of the main concepts and introduce
notations that will study throughout this paper. We define and study the topo-
logical entropy for NAIFSs in Section 3. Especially, we generalize for the case
of NAIFSs the classical Bowen’s result [8] saying that the topological entropy
is concentrated on the set of nonwandering points. Then, in Section 4, we
generalize the concept of specification to NAIFSs and characterize the entropy
points for NAIFSs with the specification property and show that any NAIFS of
surjective maps with the specification property has positive topological entropy
and all points are entropy point. In particular, each NAIFS with the specifi-
cation property is topologically chaotic. In Section 5 we define and study the
topological pressure for NAIFSs. Also, we introduce the notion of ∗-expansive
NAIFS and show that the topological pressure of any continuous potential can
be computed as a limit at a definite size scale for every NAIFS with the ∗-
expansive property. Finally, in Section 6, a special class of NAIFSs with the
specification and ∗-expansive properties is introduced. Moreover, we illustrate
two examples of NAIFSs which fit in our situation.

2. Preliminaries

Following [32], a non-autonomous iterated function system (or NAIFS for
short) is a pair (X,Φ) in which X is a set and Φ consists of a sequence {Φ(j)}j≥1

of collections of maps, where Φ(j) = {ϕ(j)
i : X → X}i∈I(j) and I(j) is a non-

empty finite index set for all j ≥ 1. By (X,Φk), we denote the pair of X and
shifted sequence {Φ(j)}j≥k and we use analogous notation for other sequences
of objects related to an NAIFS. If the set X is a compact topological space

and all the ϕ
(j)
i are continuous, we speak of a topological NAIFS. Note that in

the case where all ϕ
(j)
i are contraction affine similarities, this is also referred to

as a Moran set construction. For simplicity, we define the following symbolic
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spaces for positive integers m,n ≥ 1:

Im,n :=

n−1∏
j=0

I(m+j), Im,∞ :=

∞∏
j=m

I(j).

Elements of I1,n are called initial n-words, while those of Im,n with m > 1 are
called non-initial n-words. If there is no confusion, we use the term n-words
for these two cases without further characterization.

A word w is called finite if w ∈ Im,n for some m,n ≥ 1, in this case its
length is n and denoted by |w| := n. While, each word w ∈ Im,∞ is called
an infinite word and its length is infinity and denoted by |w| :=∞. For finite
(infinite) word w = wmwm+1 · · ·wm+n−1(w = wmwm+1 · · · ) ∈ Im,n(Im,∞)
and 1 ≤ k ≤ |w|(1 ≤ k <∞) we define w|k = wmwm+1 · · ·wm+k−1 and w|k =
wm+k · · ·wm+n−1(w|k = wmwm+1 · · ·wm+k−1 and w|k = wm+kwm+k+1 · · · ).

The time evolution of the system is defined by composing the maps ϕ
(j)
i in

the obvious way. In general, for finite (infinite) word w = wmwm+1 · · ·wm+n−1

(w = wmwm+1 · · · ) ∈ Im,n(Im,∞) and 1 ≤ k ≤ |w|(1 ≤ k <∞) we define

ϕm,kw := ϕ(m+k−1)
wm+k−1

◦ · · · ◦ ϕ(m+1)
wm+1

◦ ϕ(m)
wm and ϕm,0w := idX .

We put ϕm,−kw := (ϕm,kw )−1, which will be applied to sets, because we do

not assume that the maps ϕ
(j)
i are invertible. The orbit (trajectory) of a point

x ∈ X is the set {ϕ1,k
w (x) : k ≥ 0 and w ∈ I1,∞}. Also, for w ∈ I1,∞, the

w-orbit of x ∈ X is the sequence {ϕ1,k
w (x)}k≥0.

Let NAIFS (X,Φ) and n ≥ 1 be given. Denote by (X,Φn) the NAIFS defined

by the sequence {Φ(j,n)}j≥1, where Φ(j,n) is the collection {ϕ(j,n)
w∗j
}w∗j∈I(j,n) ,

I(j,n) := {w∗j ∈ I(j−1)n+1,n} (note that I(j,n) = I(j−1)n+1,n) and ϕ
(j,n)
w∗j

:=

ϕ
(jn)
wjn ◦ · · · ◦ϕ

((j−1)n+2)
w(j−1)n+2

◦ϕ((j−1)n+1)
w(j−1)n+1

for w∗j = w(j−1)n+1w(j−1)n+2 · · ·wjn. Take

Im,k∗ :=
∏k−1
j=0 I

(m+j,n), then #(I1,m
∗ ) = #(I1,mn), where #(A) is the cardinal

number of the set A. For w = w1w2 · · ·wmn ∈ I1,mn and 1 ≤ j ≤ m, denote
w(j−1)n+1w(j−1)n+2 · · ·wjn by w∗j ∈ I(j,n), then w = w∗1w

∗
2 · · ·w∗m ∈ I

1,m
∗ . For

simplicity, we denote elements in I1,m
∗ by w∗ and use analogous notation for

other sequences of objects related to an NAIFS.
Throughout this paper we consider topological NAIFSs (X,Φ) (except for

Section 6) so that X is a compact metric space and Φ consists of a sequence
{Φ(j)}j≥1 of non-empty finite collections Φ(j) of continuous self-maps.

3. Topological entropy

In this section we deal with the topological entropy of NAIFSs. First, we
extend the classical definition of topological entropy to NAIFSs via open covers.
Then we give the Bowen-like definitions of topological entropy for NAIFSs
and show that these different definitions coincide. We will also establish some
basic properties for topological entropy of NAIFSs. Especially, we recover
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the classical Bowen’s result to NAIFSs ensures that the topological entropy is
concentrated on the set of nonwandering points.

3.1. Topological entropy of NAIFSs via open covers

In this subsection we are going to extend the definition of topological entropy
to NAIFSs via open covers, which is a natural generalization of the definition of
topological entropy for autonomous dynamical systems [44], non-autonomous
discrete dynamical systems [24] and semigroup actions [40]. In fact, if #(I(j)) =

1 and Φ(j) = {ϕ(j)
1 } for every j ≥ 1, then we get the definition of topological

entropy for non-autonomous discrete dynamical system (X,ϕ1,∞), where ϕ1,∞

is the sequence {ϕ(j)
1 }∞j=1. Additionally, if ϕ

(j)
1 = ϕ for every j ≥ 1, then we

get the classical definition of topological entropy for autonomous dynamical
system (X,ϕ). Moreover, in the case that Φ(i) = Φ(j) for all i, j ≥ 1, then
we get the definition of topological entropy for semigroup action (X,G) with

generator set {ϕ(1)
i : i ∈ I(1)}.

Let (X,Φ) be an NAIFS of continuous maps on a compact topological space
X. We define its topological entropy as follows. A family A of subsets of X is
called a cover (of X) if their union is all of X. For open covers A1,A2, . . . ,An
of X we denote
n∨
i=1

Ai = A1 ∨ A2 ∨ · · · ∨ An = {A1 ∩A2 ∩ · · · ∩An : Ai ∈ Ai for 1 ≤ i ≤ n}.

Note that
∨n
i=1Ai is also an open cover of X. For an open cover A, finite

word w = wmwm+1 · · ·wm+n−1 ∈ Im,n and 0 ≤ j ≤ n we denote ϕm,−jw (A) =
{ϕm,−jw (A) : A ∈ A} and Am,nw :=

∨n
j=0 ϕ

m,−j
w (A). For each 0 ≤ j ≤ n,

ϕm,−jw (A) is an open cover, so Am,nw is also an open cover. Next, we denote by
N (A) the minimal possible cardinality of a subcover chosen from A. Then

h(X,Φ;A) := lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

N (A1,n
w )

)
is said to be the topological entropy of NAIFS (X,Φ) on the cover A, where
#(I1,n) is the cardinality of the set I1,n. The topological entropy of NAIFS
(X,Φ) is defined by

htop(X,Φ) := sup{h(X,Φ;A) : A is an open cover of X}.

For open covers A,B of X, continuous map g : X → X and finite word
w ∈ Im,n, the following inequalities hold:

(1) N (A ∨ B) ≤ N (A) · N (B),

(2) N (ϕm,−nw (A)) ≤ N (A),

(3) g−1(A ∨ B) = g−1(A) ∨ g−1(B).
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We say that a cover A is finer than a cover B, and write A > B, when each
element of A is contained in some element of B. If A > B, then N (A) ≥ N (B)
and A1,n

w > B1,n
w for each w ∈ I1,n. Hence,

(4) if A > B, then h(X,Φ;A) ≥ h(X,Φ;B).

Since X is compact, in the definition of htop(X,Φ) it is sufficient to take
the supremum only over all open finite covers. If A is an open finite cover
of X and w ∈ I1,n, then the cardinality of A1,n

w is at most (#(A))n. There-
fore, h(X,Φ;A) ≤ log(#(A)) and so 0 ≤ h(X,Φ;A) < ∞. But, it can be
htop(X,Φ) =∞.

Now, we extend the definition of topological entropy of an NAIFS to not nec-
essarily compact and not necessarily invariant subsets of a compact topological
space. Note that the idea of defining the topological entropy for non-compact
and non-invariant sets is not new. See [10] and [28], where Bowen and Pesin
introduce the dimension definition of topological entropy for autonomous dy-
namical systems, that applied to not necessarily compact and not necessarily
invariant subsets of a topological space. Let (X,Φ) be an NAIFS of continuous
maps on a compact topological space X and Y be a non-empty subset of X.
The set Y may not be compact and may not exhibit any kind of invariance with
respect to Φ. If A is a cover of X we denote by A|Y the cover {A∩Y : A ∈ A}
of the set Y . Then we define the topological entropy of NAIFS (X,Φ) on the
set Y by

htop(Y,Φ) := sup{h(Y,Φ;A) : A is an open cover of X},
where

h(Y,Φ;A) := lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

N (A1,n
w |Y )

)
.

3.2. Equivalent Bowen-like definitions of topological entropy

Let (X,Φ) be an NAIFS of continuous maps on a compact metric space
(X, d). For finite (infinite) word w = wmwm+1 · · ·wm+n−1(w = wmwm+1 · · · ) ∈
Im,n(Im,∞) and 1 ≤ k ≤ |w| (1 ≤ k < ∞) we introduce on X the Bowen-
metrics

(5) dw,k(x, y) := max
0≤j≤k

d(ϕm,jw (x), ϕm,jw (y)).

Also, for finite (infinite) word w = wmwm+1 · · ·wm+n−1(w = wmwm+1 · · · ) ∈
Im,n(Im,∞), 1 ≤ k ≤ |w| (1 ≤ k <∞), x ∈ X and ε > 0, we define

(6) B(x;w, k, ε) := {y ∈ X : dw,k(x, y) < ε},
which is called the dynamical (k + 1)-ball with radius ε relative to word w
around x.

Fix w ∈ I1,n for some n ≥ 1. A subset E of the space X is called (n,w, ε; Φ)-
separated, if for any two distinct points x, y ∈ E, dw,n(x, y) > ε (note that
|w| = n). Also, a subset F of the space X, (n,w, ε; Φ)-spans another subset
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K ⊆ X, if for each x ∈ K there is a y ∈ F such that dw,n(x, y) ≤ ε. For
a subset Y of X we define sn(Y ;w, ε,Φ), as the maximal cardinality of an
(n,w, ε; Φ)-separated set in Y and rn(Y ;w, ε,Φ) as the minimal cardinality of
a set in Y which (n,w, ε; Φ)-spans Y . If Y = X we sometime suppress Y and
shortly write sn(w, ε,Φ) and rn(w, ε,Φ).

Lemma 3.1. Let (X,Φ) be an NAIFS of continuous maps on a compact metric
space (X, d) and Y be a non-empty subset of X. Then,

htop(Y,Φ) = lim
ε→0

lim sup
n→∞

1

n
logSn(Y ; ε,Φ) = lim

ε→0
lim sup
n→∞

1

n
logRn(Y ; ε,Φ),

where

Sn(Y ; ε,Φ) :=
1

#(I1,n)

∑
w∈I1,n

sn(Y ;w, ε,Φ) and

Rn(Y ; ε,Φ) :=
1

#(I1,n)

∑
w∈I1,n

rn(Y ;w, ε,Φ).

Proof. First we prove the second equality that is an immediate consequence of
the following relation

Rn(Y ; ε,Φ) ≤ Sn(Y ; ε,Φ) ≤ Rn(Y ;
ε

2
,Φ) for all ε > 0.

To prove this relation, it is enough to show that

(7) rn(Y ;w, ε,Φ) ≤ sn(Y ;w, ε,Φ) ≤ rn(Y ;w,
ε

2
,Φ) for all ε > 0 and w ∈ I1,n.

Fix ε > 0 and w ∈ I1,n. It is obvious that any maximal (n,w, ε; Φ)-separated
subset of Y is an (n,w, ε; Φ)-spanning set for Y . Therefore rn(Y ;w, ε,Φ) ≤
sn(Y ;w, ε,Φ). To show the other inequality of (7) suppose E is an (n,w, ε; Φ)-
separated subset of Y and F ⊂ X is an (n,w, ε2 ; Φ)-spanning set of Y . Define ψ :
E → F by choosing, for each x ∈ E, some point ψ(x) ∈ F with dw,n(x, ψ(x)) ≤
ε
2 . Then ψ is injective and therefore the cardinality of E is not greater than
that of F . Hence, sn(Y ;w, ε,Φ) ≤ rn(Y ;w, ε2 ,Φ). This completes the proof of
relation (7).

To prove the first equality, let ε > 0 and w ∈ I1,n be given. Let E be
an (n,w, ε; Φ)-separated subset of Y and A be an open cover of X by sets of
diameter less than ε. Then by the definition of (n,w, ε; Φ)-separated sets two
distinct point of E cannot lie in the same element of A∨ϕ1,−1

w (A)∨ϕ1,−2
w (A)∨

· · ·∨ϕ1,−n
w (A). Therefore sn(Y ;w, ε,Φ) ≤ N (A1,n

w |Y ). Hence, by the definition
of topological entropy, it follows that

(8) htop(Y,Φ) ≥ lim
ε→0

lim sup
n→∞

1

n
logSn(Y ; ε,Φ).

To prove the inverse of relation (8), let A be an open cover of X and λ > 0
be a Lebesgue number for A. Then, for every x ∈ X and ε < λ

2 , the closed

ε-ball Bε(x) lies inside some element Aα ∈ A. Fix w ∈ I1,n. Let F be an



NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS 1569

(n,w, ε; Φ)-spanning set of Y with minimal cardinality rn(Y ;w, ε,Φ). For each
z ∈ F and each 0 ≤ k ≤ n (note that |w| = n), let Ak(z) be some element of
A containing Bε(ϕ

1,k
w (z)). On the other hand, as F is an (n,w, ε; Φ)-spanning

set of Y , for any y ∈ Y there is a z ∈ F such that ϕ1,k
w (y) ∈ Bε(ϕ1,k

w (z)) for
0 ≤ k ≤ n. Thus, ϕ1,k

w (y) ∈ Ak(z) for 0 ≤ k ≤ n, and the family{
A0(z) ∩ ϕ1,−1

w (A1(z)) ∩ · · · ∩ ϕ1,−n
w (An(z)) ∩ Y : z ∈ F

}
is a subcover of the cover A1,n

w |Y of Y . Hence,

N (A1,n
w |Y ) ≤ #(F ) = rn(Y ;w, ε,Φ).

Now, by the definition of topological entropy and second equality, we get

htop(Y,Φ) ≤ lim
ε→0

lim sup
n→∞

1

n
logRn(Y ; ε,Φ) = lim

ε→0
lim sup
n→∞

1

n
logSn(Y ; ε,Φ),

which completes the proof. �

Remark 3.2. The following two facts hold:

• The limits in the previous lemma can be replaced by supε>0, because
for ε2 < ε1 and w ∈ I1,n we have

rn(Y ;w, ε2,Φ) ≥ rn(Y ;w, ε1,Φ) and sn(Y ;w, ε2,Φ) ≥ sn(Y ;w, ε1,Φ).

• rn(Y ;w, ε,Φ) is defined for w ∈ I1,n as the minimal cardinality of a set
in Y which (n,w, ε; Φ)-spans Y . If we take rXn (Y ;w, ε,Φ) for w ∈ I1,n

as the minimal cardinality of a set in X which (n,w, ε; Φ)-spans Y ,
again we have

htop(Y,Φ) = lim
ε→0

lim sup
n→∞

1

n
logRXn (Y ; ε,Φ),

where

RXn (Y ; ε,Φ) :=
1

#(I1,n)

∑
w∈I1,n

rXn (Y ;w, ε,Φ).

Hence, it is not important that we take rn(Y ;w, ε,Φ) for w ∈ I1,n as
the minimal cardinality of a set in Y which (n,w, ε; Φ)-spans Y or as
the minimal cardinality of a set in X which (n,w, ε; Φ)-spans Y .

3.3. Basic properties of topological entropy

In this subsection we are going to give the basic properties of topological
entropy of NAIFSs.

Lemma 3.3. Let for 1 ≤ i ≤ k, n = 1, 2, . . . and w ∈ In in which In is a
non-empty finite set, an,w,i’s be non-negative numbers. Then

lim sup
n→∞

1

n
log
( 1

#(In)

∑
w∈In
1≤i≤k

an,w,i

)
= max

1≤i≤k
lim sup
n→∞

1

n
log
( 1

#(In)

∑
w∈In

an,w,i

)
.
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Proof. It is actually a direct consequence of a priori simpler expression con-
sidered for non-autonomous dynamical systems (see [24, Lemma 4.1] and [2,
Lemma 4.1.9]), taking

an,i :=
1

#(In)

∑
w∈In

an,w,i.
�

Proposition 3.4. Let (X,Φ) be an NAIFS of continuous maps on a compact

topological space X. If X =
⋃k
i=1Xi in which each Xi is an arbitrary non-

empty subset of X, then

htop(X,Φ) = max
1≤i≤k

htop(Xi,Φ).

Note that, we do not need to assume that the sets Xi are closed or invariant
(invariant in the sense that they contain the trajectories of all points), because
we have defined the topological entropy of NAIFS (X,Φ) on every subset of X.

Proof. By the definition of topological entropy we have

htop(X,Φ) ≥ max
1≤i≤k

htop(Xi,Φ).

To prove the reverse inequality, let w ∈ I1,n and A be an open cover of X.
Let C1, C2, . . ., Ck be subcovers chosen from the covers A1,n

w |X1
, A1,n

w |X2
, . . .,

A1,n
w |Xk , respectively. Then each element of C = C1 ∪ C2 ∪ · · · ∪ Ck is contained

in some element of A1,n
w and C is an open cover of X. This implies N (A1,n

w ) ≤∑k
i=1N (A1,n

w |Xi). Now, by Lemma 3.3, we get

h(X,Φ;A) = lim sup
n→∞

1

n
log
( 1

#(I1,n)

∑
w∈I1,n

N (A1,n
w )
)

≤ lim sup
n→∞

1

n
log
( 1

#(I1,n)

∑
w∈I1,n
1≤i≤k

N (A1,n
w |Xi)

)

= max
1≤i≤k

lim sup
n→∞

1

n
log
( 1

#(I1,n)

∑
w∈I1,n

N (A1,n
w |Xi)

)
= max

1≤i≤k
h(Xi,Φ;A) ≤ max

1≤i≤k
htop(Xi,Φ).

Since open cover A was arbitrary, we conclude that

htop(X,Φ) ≤ max
1≤i≤k

htop(Xi,Φ),

which completes the proof. �

Now, we give an analogue of the well known property htop(ϕn) = n ·htop(ϕ)
of the topological entropy of autonomous dynamical systems to NAIFSs that
will be used in the proof of Theorem 3.15.

The following result is now folklore and we omit its proof, see [24, Lemma
4.2].
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Lemma 3.5. Let (X,Φ) be an NAIFS of continuous maps on a compact topo-
logical space X. Then for any subset Y of X and every n ≥ 1, htop(Y,Φn) ≤
n · htop(Y,Φ).

Remark 3.6. In general, we cannot claim that htop(X,Φn) = n ·htop(X,Φ) (see

the comment after Lemma 4.2 in [24], where #(I(j)) = 1 for every j ∈ N). Note
that the results in [24] are about non-autonomous discrete dynamical systems
which are a special case of NAIFSs.

Now, we give some sufficient conditions to have equality in Lemma 3.5. An
NAIFS (X,Φ) of continuous maps on a compact metric space (X, d) is said to be
equicontinuous, if for every ε > 0 there exists δ > 0 such that the implication

d(x, y) < δ ⇒ d(ϕ
(j)
i (x), ϕ

(j)
i (y)) < ε holds for every x, y ∈ X, j ≥ 1 and

i ∈ I(j).
By [24, Lemma 4.4] the following results can be followed.

Lemma 3.7. Let (X,Φ) be an equicontinuous NAIFS on a compact metric
space (X, d). Then for any subset Y of X and every n ≥ 1, htop(Y,Φn) =
n · htop(Y,Φ).

Let us take an NAIFS (X,Φ) in which X is a compact metric space and Φ

consists of a sequence {Φ(j)}j≥1 of collections of maps, where Φ(j) = {ϕ(j)
i :

X → X}i∈I(j) and I(j) is a non-empty finite index set for all j ≥ 1. For
each k ≥ 1 we will denote by (X,Φk) the NAIFS composed of the sequence
{Φ(j)}j≥k.

Now, we give the following lemma that will be used in the next section.

Lemma 3.8. Let (X,Φ) be an NAIFS of continuous maps on a compact topo-
logical space X. Then h(X,Φi;A) ≤ h(X,Φj ;A) for every 1 ≤ i ≤ j <∞ and
every open cover A of X. In particular, htop(X,Φi) ≤ htop(X,Φj).

Proof. It is enough to show that h(X,Φi;A) ≤ h(X,Φi+1;A) for every 1 ≤ i <
∞ and every open cover A of X. Let i ≥ 1 and A be an open cover of X.
For w = wiwi+1 · · ·wi+n−1 ∈ Ii,n put w′ := w|1 = wi+1 · · ·wi+n−1 ∈ Ii+1,n−1.
Now, by relation (3), we have

Ai,nw = A ∨ ϕi,−1
w (A) ∨ ϕi,−2

w (A) ∨ · · · ∨ ϕi,−nw (A)

= A ∨
(
ϕ(i)
wi

)−1(A ∨ ϕi+1,−1
w′ (A) ∨ ϕi+1,−2

w′ (A) ∨ · · · ∨ ϕi+1,−(n−1)
w′ (A)

)
= A ∨

(
ϕ(i)
wi

)−1(Ai+1,n−1
w′

)
.

Using relations (1) and (2) we get

h(X,Φi;A) = lim sup
n→∞

1

n
log
( 1

#(Ii,n)

∑
w∈Ii,n

N (Ai,nw )
)

≤ lim sup
n→∞

1

n
log
( 1

#(Ii,n)

∑
w∈Ii,n

N (A) · N (Ai+1,n−1
w′ )

)
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= lim sup
n→∞

1

n
log
(#(I(i))

#(Ii,n)

∑
w′∈Ii+1,n−1

N (A) · N (Ai+1,n−1
w′ )

)
= lim sup

n→∞

1

n
log
( N (A)

#(Ii+1,n−1)

∑
w′∈Ii+1,n−1

N (Ai+1,n−1
w′ )

)
= lim sup

n→∞

1

n
logN (A)

+ lim sup
n→∞

1

n
log
( 1

#(Ii+1,n−1)

∑
w′∈Ii+1,n−1

N (Ai+1,n−1
w′ )

)
= lim sup

n→∞

1

n
log
( 1

#(Ii+1,n)

∑
w∈Ii+1,n

N (Ai+1,n
w )

)
= h(X,Φi+1;A).

Now, by taking supremum over all open covers A of X we have htop(X,Φi) ≤
htop(X,Φi+1) which completes the proof. �

In general, without more assumptions, we cannot claim that htop(X,Φ) =
htop(X,Φi) for all i ≥ 1. Nevertheless, in Corollary 4.4 we will give a sufficient
condition that guarantees the equality htop(X,Φ) = htop(X,Φi) for all i ≥ 1.

Remark 3.9. Because, in general, the inequality N
((
ϕ

(i)
wi

)−1
(A)|Y

)
≤ N (A|Y )

is not true, the proof of Lemma 3.8 cannot be modified to prove an analogue
of the theorem for the topological entropy on the subsets Y of X. Hence, it
is not very surprising that such an analogue does not hold (see [24, Fig. 2 and
comments], where #(I(j)) = 1 for every j ∈ N).

3.4. Asymptotical topological entropy and topologically chaotic
NAIFSs

As an autonomous dynamical system (X, f) is usually called topologically
chaotic if htop(f) > 0, one could consider also an NAIFS (X,Φ) with htop(X,Φ)
> 0 to be topologically chaotic. But, we give another definition which is an
extension of the definition of topologically chaotic that given by Kolyada and
Snoha for non-autonomous discrete dynamical systems [24].

Let (X,Φ) be an NAIFS of continuous maps on a compact topological space
X and A be an open cover of X, then by Lemma 3.8 the limit

h∗(X,Φ;A) := lim
n→∞

h(X,Φn;A)

= lim
n→∞

lim sup
k→∞

1

k
log

(
1

#(In,k)

∑
w∈In,k

N (An,kw )

)
exists. The quantity h∗(X,Φ;A) is said to be the asymptotical topological
entropy of the NAIFS (X,Φ) on the cover A. Put

h∗(X,Φ) := sup
A
h∗(X,Φ;A),
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where the supremum is taken over all open covers A of X. By the definition
and Lemma 3.8 it is easy to see that

h∗(X,Φ) = sup
A
h∗(X,Φ;A) = sup

A
lim
n→∞

h(X,Φn;A)

= sup
A

sup
n
h(X,Φn;A) = sup

(A,n)

h(X,Φn;A)

= sup
n

sup
A
h(X,Φn;A) = lim

n→∞
sup
A
h(X,Φn;A)

= lim
n→∞

htop(X,Φn).

If X is a compact metric space, then by the definition of topological entropy
via separated and spanning sets we have

h∗(X,Φ) = lim
n→∞

lim
ε→0

lim sup
k→∞

1

k
logSk(ε,Φn)

= lim
ε→0

lim
n→∞

lim sup
k→∞

1

k
logSk(ε,Φn)

= lim
n→∞

lim
ε→0

lim sup
k→∞

1

k
logRk(ε,Φn)

= lim
ε→0

lim
n→∞

lim sup
k→∞

1

k
logRk(ε,Φn),

where

Sk(ε,Φn) =
1

#(In,k)

∑
w∈In,k

sk(w, ε,Φn) and

Rk(ε,Φn) =
1

#(In,k)

∑
w∈In,k

rk(w, ε,Φn).

The quantity h∗(X,Φ) is said to be the asymptotical topological entropy of
NAIFS (X,Φ).

Definition 3.10. An NAIFS (X,Φ) of continuous maps on a compact topo-
logical space X is said to be topologically chaotic if it has positive asymptotical
topological entropy, i.e., h∗(X,Φ) > 0.

Remark 3.11. By Remark 3.9, since for a proper subset Y of X (Y $ X) we
may have htop(Y,Φi) ≥ htop(Y,Φj) for some j > i, there is a problem with the
extension of the concept of asymptotical topological entropy to a proper subset
Y of X. But, we can define h∗(Y,Φ) := lim supn→∞ htop(Y,Φn) for proper
subsets Y of X.

Many results that hold for the topological entropy of NAIFSs can be carried
to asymptotical topological entropy of NAIFSs. Hence, it is not difficult to
see that Proposition 3.4, Lemmas 3.5, 3.7 and 3.8 have analogues versions for
asymptotical topological entropy of NAIFSs by replacing htop by h∗.
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3.5. Entropy of NAIFSs of monotone interval maps or circle maps

Sometimes in computing the topological entropy of a dynamical system, one
may be very interested in whether it is positive or zero rather than its exact
value. Also, computing the exact value may be impossible. In the theory of
autonomous dynamical systems, a homeomorphism on the interval or the circle
has zero topological entropy (see, e.g., [1, 44]). Also, in [24] in the theory of
non-autonomous discrete dynamical systems, Kolyada and Snoha showed that
any non-autonomous discrete dynamical systems of continuous (not necessarily
strictly) monotone maps on the interval or the circle, have zero topological
entropy. In the following theorem, we extend these results to NAIFSs on the
interval and the circle.

We consider the unit circle S1 as the quotient space of the real line by
the group of translations by integers (S1 = R/Z). Let q : R → S1 be the
quotient map. In the unit circle S1, we consider the metric (denoted by ρ) and
the orientation induced from the metric and orientation of the real line via q
(hence the distance between any two points is at most 1

2 ). Also, we denote

by I the unit interval [0, 1]. Note that a homeomorphism of I or S1 is either
strictly increasing (orientation preserving) or strictly decreasing (orientation
reversing). The desired result can be followed from the following theorem. In
it, when we speak about an NAIFS of monotone maps we do not assume that
the type of monotonicity is the same for all of them.

Theorem 3.12. Let (X,Φ) be an NAIFS of continuous monotone maps in
which X is I or S1. Then, the topological entropy htop(X,Φ) is zero. Thus,
h∗(X,Φ) = 0.

Proof. First, we begin the proof for the interval case. Fix w ∈ I1,n. Let
E := {x1, x2, . . . , xk} be a subset of I with x1 < x2 < · · · < xk. Since the
maps ϕw1

, ϕw2
, . . . , ϕwn are monotone, for every 0 ≤ j ≤ n either ϕ1,j

w (x1) ≤
ϕ1,j
w (x2) ≤ · · · ≤ ϕ1,j

w (xk) or ϕ1,j
w (x1) ≥ ϕ1,j

w (x2) ≥ · · · ≥ ϕ1,j
w (xk). This implies

that the set E is (w, n, ε; Φ)-separated if and only if for every 1 ≤ i ≤ k − 1
the set {xi, xi+1} is (w, n, ε; Φ)-separated. Since the length of the interval I
is 1, for every 0 ≤ j ≤ n at most [1/ε] distances from |ϕ1,j

w (x1) − ϕ1,j
w (x2)|,

|ϕ1,j
w (x2)− ϕ1,j

w (x3)|, . . . , |ϕ1,j
w (xk−1)− ϕ1,j

w (xk)| are longer than ε, where [1/ε]
is the integer part of 1/ε. Hence, at most (n+1)[1/ε] sets of the form {xi, xi+1},
1 ≤ i ≤ k − 1 are (w, n, ε; Φ)-separated. So if E is (w, n, ε; Φ)-separated, then
k − 1 ≤ (n + 1)[1/ε]. Consequently, sn(w, ε,Φ) ≤ 1 + (n + 1)[1/ε]. Hence, by
the definition of topological entropy, it follows that

htop(I,Φ) = lim
ε→0

lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

sn(w, ε,Φ)

)

≤ lim
ε→0

lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

(
1 + (n+ 1)[1/ε]

))
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= lim
ε→0

lim sup
n→∞

1

n
log
(
1 + (n+ 1)[1/ε]

)
= 0.

Now, let X = S1 and w ∈ I1,n. Let E := {x1, x2, . . . , xk} be a maximal
(w, n, ε; Φ)-separated set in S1 with x1 < x2 < · · · < xk, i.e., sn(w, ε,Φ) = k.
Then the sets {xi, xi+1}, 1 ≤ i ≤ k − 1 and {xk, x1} are (w, n, ε; Φ)-separated.
Since for every 0 ≤ j ≤ n the sum of distances

k−1∑
i=1

ρ(ϕ1,j
w (xi), ϕ

1,j
w (xi+1)) + ρ(ϕ1,j

w (xk), ϕ1,j
w (x1))

equals to the length of the circle = 1, at most [1/ε] of them are longer than ε.
Hence, at most (n+1)[1/ε] sets of the form {xi, xi+1}, 1 ≤ i ≤ k−1 or {xk, x1}
are (w, n, ε; Φ)-separated. Thus sn(w, ε,Φ) = k ≤ (n+1)[1/ε], since all of these
sets are (w, n, ε; Φ)-separated. Hence, by the definition of topological entropy,
it follows that

htop(S1,Φ) = lim
ε→0

lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

sn(w, ε,Φ)

)

≤ lim
ε→0

lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

(n+ 1)[1/ε]

)

= lim
ε→0

lim sup
n→∞

1

n
log
(
(n+ 1)[1/ε]

)
= 0.

In a similar way, for every n ≥ 2 one can conclude that htop(I,Φn) = 0 =
htop(S1,Φn). Hence, h∗(I,Φ) = 0 = h∗(S1,Φ) which completes the proof. �

3.6. Topological entropy on the set of nonwandering points

If (X,ϕ) is an autonomous dynamical system in which ϕ is a continuous
self-map of a compact topological space X, then by [8], the topological entropy
of ϕ and of ϕ|Ω(f) are equal. Where, Ω(ϕ) is the set of nonwandering points
of ϕ. A point x ∈ X is said to be a nonwandering point of ϕ if for every
non-empty open neighborhood Ux of x in X, there exists a positive integer n
such that ϕn(Ux) ∩ Ux 6= ∅. Also, in the context of non-autonomous discrete
dynamical systems, Kolyada and Snoha [24] showed that for every sequence
ϕ1,∞ = {ϕi}∞i=1 of equicontinuous self-maps of a compact metric space X, the
topological entropy of non-autonomous discrete dynamical system (X,ϕ1,∞) is
equal to the topological entropy of its restriction to the set of nonwandering
points, i.e., htop(ϕ1,∞) = htop(ϕ1,∞|Ω(ϕ1,∞)). Where, Ω(ϕ1,∞) is the set of
nonwandering points of sequence ϕ1,∞. Additionally, Eberlein [16] asserted
that the topological entropy of an (abelian) finitely generated semigroup action
is equal to the topological entropy of its restriction to its nonwandering set. In
the following theorem, we want to find a analogous result for NAIFSs.

Definition 3.13. Let (X,Φ) be an NAIFS of continuous maps on a compact
topological space X. A point x ∈ X is said to be nonwandering for Φ if for
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every open neighbourhood Ux of x there is a finite word w ∈ Im,n for some
m,n ≥ 1, such that ϕm,nw (Ux) ∩ Ux 6= ∅. The set of all nonwandering points of
Φ is called the nonwandering set of Φ and denoted by Ω(Φ). It is easy to see
that Ω(Φ) is a closed subset of X.

Remark 3.14. The following two facts hold:

• Definition 3.13 implies that an open subset U ⊆ X is wandering for Φ
if ϕm,nw (U)∩U = ∅ for every finite word w ∈ Im,n and every m,n ≥ 1.
Also a point x ∈ X is wandering for Φ if it belongs to some wandering
set U . Hence, x is wandering if and only if it is not nonwandering.

• In an NAIFS (X,Φ), if #(I(j)) = 1 and Φ(j) = {ϕ(j)
1 } for every j ≥ 1,

then (X,Φ) is a non-autonomous discrete dynamical system and Defini-
tion 3.13 coincides with the usual definition of nonwandering points for

non-autonomous discrete dynamical systems. Additionally, if ϕ
(j)
1 = ϕ

for every j ≥ 1, then (X,Φ) is an autonomous dynamical system and
Definition 3.13 coincides with the usual definition of nonwandering
points for autonomous dynamical systems.

Theorem 3.15. Let (X,Φ) be an equicontinuous NAIFS of a compact metric
space (X, d). Then htop(X,Φ) = htop(Ω(Φ),Φ|Ω(Φ)).

Proof. By the definition of topological entropy, we have

htop(X,Φ) ≥ htop(Ω(Φ),Φ|Ω(Φ)).

Hence, it is enough to prove the converse inequality. To do this we will follow
the main ideas from the proof of [24, Theorem H] and [2, Lemma 4.1.5].

So let A be an open cover of X. Fix n ≥ 1 and w ∈ I1,n. Let ζw be an
minimal subcover of Ω(Φ) chosen from A1,n

w . Since X is a compact metric
space, the set K = X \

⋃
B∈ζw B is compact and consists of wandering points.

Hence, we can cover K with a finite number of wandering sets (subsets of
X, not necessarily of K), each of them contained in some element of A1,n

w .
These sets, together with all elements of ζw, form an open cover ξw of X,

finer than A1,n
w . Now, in NAIFS (X,Φn) for w∗ = w∗1w

∗
2 · · ·w∗k ∈ I1,k

∗ with

w∗ = w′ = w′1w
′
2 · · ·w′kn ∈ I1,kn, consider any non-empty element of (ξw)1,k

w∗ .
It is of the form

C0 ∩ (ϕ
(1,n)
w∗1

)−1(C1) ∩ (ϕ
(1,n)
w∗1

)−1 ◦ (ϕ
(2,n)
w∗2

)−1(C2)∩

· · · ∩ (ϕ
(1,n)
w∗1

)−1 ◦ (ϕ
(2,n)
w∗2

)−1 ◦ · · · ◦ (ϕ
(k,n)
w∗k

)−1(Ck),

that is equal to

C0 ∩ ϕ1,−n
w′ (C1) ∩ ϕ1,−n

w′ ◦ ϕn+1,−n
w′ (C2)∩

· · · ∩ ϕ1,−n
w′ ◦ ϕn+1,−n

w′ ◦ · · · ◦ ϕ(k−1)n+1,−n
w′ (Ck),

where ϕ
(j,n)
w∗j

= ϕ
(j−1)n+1,n
w′ ∈ Φ(j,n) for 1 ≤ j ≤ k and Ci ∈ ξw for 0 ≤ i ≤ k.

Since we assume that this element is non-empty, we get that if Ci = C
j

for
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some i < j, then

ϕ1,−n
w′ ◦ · · · ◦ ϕ(i−1)n+1,−n

w′ ◦ ϕin+1,−n
w′ ◦ · · · ◦ ϕ(j−1)n+1,−n

w′ (Ci)

∩ ϕ1,−n
w′ ◦ · · · ◦ ϕ(i−1)n+1,−n

w′ (Ci) 6= ∅,

so (ϕ
(j−1)n+1,n
w′ ◦ · · · ◦ ϕin+1,n

w′ )(Ci) = ϕ
in+1,(j−i)n
w′ (Ci) intersects Ci, hence Ci

cannot be wandering for Φ, this implies that Ci ∈ ζw.

One can show that [2, Lemma 4.1.5] the number of elements in cover (ξw)1,k
w∗

is not larger than (m+1)! · (k+1)m · (#(ζw))k+1, where m = #(ξw \ζw). Thus,

h(X,Φn; ξw) = lim sup
k→∞

1

k
log

(
1

#(I1,k
∗ )

∑
w∗∈I1,k∗

N
(
(ξw)1,k

w∗
))

≤ lim sup
k→∞

1

k
log

(
1

#(I1,k
∗ )

∑
w∗∈I1,k∗

(m+ 1)! · (k + 1)m · (#(ζw))k+1

)

= lim sup
k→∞

1

k
log
(

(m+ 1)! · (k + 1)m · (#(ζw))k+1
)

= log(#(ζw)).

Now we are ready to finish the proof. The equicontinuity assumption of
the NAIFS (X,Φ) implies that htop(X,Φ) = 1

nhtop(X,Φn) for each n ≥ 1, see
Lemma 3.7. Also, by the definition of topological entropy it follows that for
any ε > 0 there is an open cover A of X with htop(X,Φn) < h(X,Φn;A) + ε.
Using these facts and relation (4), we get that for any positive integer n and
ε > 0 there is an open cover A of X with

htop(X,Φ) =
1

n
htop(X,Φn) <

1

n
h(X,Φn;A) +

ε

n

≤ 1

n
h(X,Φn;A1,n

w ) +
ε

n
≤ 1

n
h(X,Φn; ξw) +

ε

n

≤ 1

n
log(#(ζw)) +

ε

n
=

1

n
logN

(
A1,n
w |Ω(Φ)

)
+
ε

n
,

where w ∈ I1,n is arbitrary. Thus,

htop(X,Φ) ≤ 1

n
log

(
1

#(I1,n)

∑
w∈I1,n

N (A1,n
w |Ω(Φ))

)
+
ε

n
.

Taking the upper limit when n→∞, we have

htop(X,Φ) ≤ h(Ω(Φ),Φ|Ω(Φ);A) ≤ htop(Ω(Φ),Φ|Ω(Φ)),

that completes the proof. �

Remark 3.16. The equicontinuity assumption in Theorem 3.15 is necessary,
because in the proof of Theorem 3.15 we use the equality htop(X,Φn) =
n · htop(X,Φ) that is not true (in general case) without the equicontinuity
assumption, see Remark 3.6 and Lemma 3.7.
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4. Specification property and entropy

The notion of entropy is one of the most important objects in dynamical
systems, either as a topological invariant or as a measure of the chaoticity
of dynamical systems. Several notions of entropy have been introduced for
other branches of dynamical systems in an attempt to describe their dynamical
characteristics. In this section, we define entropy points for NAIFSs. The
notion of entropy points was defined for finitely generated pseudogroup actions,
finitely generated semigroup actions and non-autonomous discrete dynamical
systems, respectively in [4], [34] and [26]. Roughly speaking, entropy points
are those that their local neighborhoods reflect the complexity of the entire
dynamical system in the context of topological entropy. Also, we define a
notion of specification property for NAIFSs and characterize entropy points
and topological entropy for NAIFSs with the specification property.

Definition 4.1. An NAIFS (X,Φ) of continuous maps on a compact topolog-
ical space X, admits an entropy point x0 ∈ X if for every open neighbourhood
U of x0 the equality htop(X,Φ) = htop(cl(U),Φ) holds.

The notion of specification was first introduced in the 1970s as a property of
uniformly hyperbolic basic pieces and became a characterization of complexity
in dynamical systems. Thus, several notions of specification had been intro-
duced in an attempt to describe their dynamical characteristics for dynamical
systems [26, 34, 39, 42, 45]. In the following definition, we give a concept of
specification property for NAIFSs.

Definition 4.2. An NAIFS (X,Φ) of continuous maps on a compact metric
space (X, d), is said to have the specification property if for every δ > 0 there
is N(δ) ∈ N such that for each w ∈ I1,∞, any x1, x2, . . . , xs ∈ X with s ≥
2 and any sequence 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks of integers
with jn+1 − kn ≥ N(δ) for n = 1, . . . , s − 1, there is a point x ∈ X such
that d(ϕ1,i

w (x), ϕ1,i
w (xm)) ≤ δ for each 1 ≤ m ≤ s and any jm ≤ i ≤ km.

In other words, an NAIFS (X,Φ) has the specification property if we have
the specification property along every branch w ∈ I1,∞ as a non-autonomous
discrete dynamical system, where N(δ) is independent of w ∈ I1,∞ for each
δ > 0.

In the last section, we illustrate some examples of NAIFSs for which the
specification property hold.

Rodrigues and Varandas [34] showed that for any finitely generated con-
tinuous semigroup action of local homeomorphisms on a compact Riemannian
manifold with the strong orbital specification property (weak orbital specifica-
tion property), every point is an entropy point. Also, they showed that any
finitely generated continuous semigroup action on a compact metric space with
the strong orbital specification property (weak orbital specification property
under some other conditions) has positive topological entropy. Also, Nazarian
Sarkooh and Ghane [26] showed that every non-autonomous discrete dynamical
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system of surjective maps with the specification property has positive topolog-
ical entropy and all points are entropy point; in particular, it is topologically
chaotic. In this section, we extend these results to NAIFSs.

4.1. Specification property and entropy points

We investigate here the relation between the specification property of
NAIFSs and the existence of entropy points.

Theorem 4.3. Let (X,Φ) be an NAIFS of surjective continuous maps on a
compact metric space (X, d) without any isolated point. If the NAIFS (X,Φ)
satisfies the specification property, then every point of X is an entropy point.

Proof. According to Lemma 3.8, htop(X,Φ) ≤ htop(X,Φk) for every k ≥ 1.
Also, by Lemma 3.1,

htop(X,Φ) = lim
ε→0

lim sup
n→∞

1

n
logSn(ε,Φ),

where

Sn(ε,Φ) =
1

#(I1,n)

∑
w∈I1,n

sn(w, ε,Φ).

Using these facts, we show that for every z ∈ X and every open neighbor-
hood V of z, htop(X,Φ) = htop(cl(V ),Φ). For ε > 0 define Wε := {y ∈
V : d(y, ∂V ) > ε

4}. Fix ε > 0 such that the open set Wε is non-empty.
Take N( ε4 ) ≥ 1 given by the definition of specification property. Fix w =

w1w2 · · ·wN( ε4 )wN( ε4 )+1 · · ·wN( ε4 )+n ∈ I1,N( ε4 )+n and take

w′ := w|N( ε4 ) = wN( ε4 )+1wN( ε4 )+2 · · ·wN( ε4 )+n ∈ IN( ε4 )+1,n.

Let

• E := {z1, z2, . . . , zl} ⊆ X be a maximal (n,w′, ε; ΦN( ε4 )+1)-separated
set,

• E′ = {z′1, z′2, . . . , z′l} ⊆ X be a preimage set of E under ϕ
1,N( ε4 )
w , i.e.,

ϕ
1,N( ε4 )
w (z′i) = zi for 1 ≤ i ≤ l,

• y ∈ Wε be an arbitrary point (Wε 6= ∅, because X does not have any
isolated point).

Let j1 = k1 = 0, j2 = N( ε4 ) and k2 = N( ε4 ) + n. By the definition of
specification property, for every z′i ∈ E′, by taking x1 = y and x2 = z′i,

there exists yi ∈ B(y, ε4 ) such that ϕ
1,N( ε4 )
w (yi) ∈ B(ϕ

1,N( ε4 )
w (z′i);w

′, n, ε4 ) =
B(zi;w

′, n, ε4 ). Since E := {z1, z2, . . . , zl} ⊆ X is a maximal (n,w′, ε; ΦN( ε4 )+1)-

separated set, the set {yi}li=1 ⊆ cl(V ) is (N( ε4 ) + n,w, ε2 ; Φ)-separated. So
sN( ε4 )+n(cl(V );w, ε2 ,Φ) ≥ sn(w′, ε,ΦN( ε4 )+1), that implies

SN( ε4 )+n(cl(V );
ε

2
,Φ) ≥ #(I1,N( ε4 )) · Sn(ε,ΦN( ε4 )+1) ≥ Sn(ε,ΦN( ε4 )+1).
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Thus

lim sup
n→∞

1

n
logSn(cl(V );

ε

2
,Φ) = lim sup

n→∞

1

N( ε4 ) + n
logSN( ε4 )+n(cl(V );

ε

2
,Φ)

≥ lim sup
n→∞

1

N( ε4 ) + n
logSn(ε,ΦN( ε4 )+1)

= lim sup
n→∞

1

n
logSn(ε,ΦN( ε4 )+1).

This implies htop(X,Φ) ≥ htop(cl(V ),Φ) ≥ htop(X,ΦN( ε4 )+1) ≥ htop(X,Φ).

Hence, we have htop(X,Φ) = htop(cl(V ),Φ), i.e., every point is an entropy
point. �

By Lemma 3.8 and the proof of Theorem 4.3, we conclude the following
corollary.

Corollary 4.4. Let (X,Φ) be an NAIFS of surjective continuous maps on a
compact metric space (X, d) without any isolated point. If the NAIFS (X,Φ)
satisfies the specification property, then htop(X,Φ) = htop(X,Φi) for every i ≥
1.

4.2. Specification property and positive topological entropy

In this subsection, we show that the specification property is enough to
guarantee that any NAIFS of surjective maps has positive topological entropy.
More precisely, we have the following theorem.

Theorem 4.5. Let (X,Φ) be an NAIFS of surjective continuous maps on a
compact metric space (X, d) without any isolated point. If the NAIFS (X,Φ)
satisfies the specification property, then it has positive topological entropy, i.e.,
htop(X,Φ) > 0.

Proof. By Lemma 3.1, we know that

htop(X,Φ) = lim
ε→0

lim sup
n→∞

1

n
logSn(ε,Φ),

where

Sn(ε,Φ) =
1

#(I1,n)

∑
w∈I1,n

sn(w, ε,Φ)

and the limit can be replaced by supε>0. Thus, it is enough to prove that there
exists ε > 0 small enough so that

lim sup
n→∞

1

n
logSn(ε,Φ) > 0.

Let ε > 0 be small and fixed so that there are at least two distinct 2ε-separated
points x1, y1 ∈ X, i.e., d(x1, y1) > 2ε (note that X has no any isolated point).
Let N( ε2 ) ≥ 1 be given by the definition of specification property.
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Fix w ∈ I1,N( ε2 ). Take j1 = k1 = 0, j2 = k2 = N( ε2 ) and consider preimages

x2 of x1 and y2 of y1 under ϕ
1,N( ε2 )
w , i.e., ϕ

1,N( ε2 )
w (x2) = x1 and ϕ

1,N( ε2 )
w (y2) = y1.

By applying the specification property to pairs (x1, x2), (x1, y2), (y1, x2) and
(y1, y2), there are x1,1, x1,2 ∈ B(x1,

ε
2 ) and y1,1, y1,2 ∈ B(y1,

ε
2 ) such that

ϕ
1,N( ε2 )
w (x1,1), ϕ

1,N( ε2 )
w (y1,2) ∈ B(x1,

ε

2
) and

ϕ
1,N( ε2 )
w (x1,2), ϕ

1,N( ε2 )
w (y1,1) ∈ B(y1,

ε

2
).

It is clear that the set {x1,1, x1,2, y1,1, y1,2} is (N( ε2 ), w, ε; Φ)-separated. In

particular, it follows that sN( ε2 )(w, ε,Φ) ≥ 22. Hence, we have

SN( ε2 )(ε,Φ) =
1

#(I1,N( ε2 ))

∑
w∈I1,N( ε

2
)

sN( ε2 )(w, ε,Φ)

≥ 1

#(I1,N( ε2 ))

∑
w∈I1,N( ε

2
)

22 = 22.

Fix w ∈ I1,2N( ε2 ). Take j1 = k1 = 0, j2 = k2 = N( ε2 ) and j3 = k3 = 2N( ε2 ).

Consider preimages x2 of x1 and y2 of y1 under ϕ
1,N( ε2 )
w , i.e., ϕ

1,N( ε2 )
w (x2) = x1

and ϕ
1,N( ε2 )
w (y2) = y1. Also, consider preimages x3 of x1 and y3 of y1 under

ϕ
1,2N( ε2 )
w , i.e., ϕ

1,2N( ε2 )
w (x3) = x1 and ϕ

1,2N( ε2 )
w (y3) = y1. By applying the

specification property to triples (x1, x2, x3), (x1, x2, y3), (x1, y2, x3), (x1, y2, y3),
(y1, y2, y3), (y1, y2, x3), (y1, x2, y3) and (y1, x2, x3), there are x1,1, x1,2, x1,3,
x1,4 ∈ B(x1,

ε
2 ) and y1,1, y1,2, y1,3, y1,4 ∈ B(y1,

ε
2 ) such that

• ϕ1,N( ε2 )
w (x1,1), ϕ

1,2N( ε2 )
w (x1,1) ∈ B(x1,

ε
2 ) and

ϕ
1,N( ε2 )
w (x1,4), ϕ

1,2N( ε2 )
w (x1,4) ∈ B(y1,

ε
2 );

• ϕ1,N( ε2 )
w (x1,2) ∈ B(x1,

ε
2 ) and ϕ

1,2N( ε2 )
w (x1,2) ∈ B(y1,

ε
2 );

• ϕ1,N( ε2 )
w (x1,3) ∈ B(y1,

ε
2 ) and ϕ

1,2N( ε2 )
w (x1,3) ∈ B(x1,

ε
2 );

• ϕ1,N( ε2 )
w (y1,1), ϕ

1,2N( ε2 )
w (y1,1) ∈ B(y1,

ε
2 ) and

ϕ
1,N( ε2 )
w (y1,4), ϕ

1,2N( ε2 )
w (y1,4) ∈ B(x1,

ε
2 );

• ϕ1,N( ε2 )
w (y1,2) ∈ B(y1,

ε
2 ) and ϕ

1,2N( ε2 )
w (y1,2) ∈ B(x1,

ε
2 );

• ϕ1,N( ε2 )
w (y1,3) ∈ B(x1,

ε
2 ) and ϕ

1,2N( ε2 )
w (y1,3) ∈ B(y1,

ε
2 ).

It is clear that the set {x1,1, x1,2, x1,3, x1,4, y1,1, y1,2, y1,3, y1,4} is (2N( ε2 ), w, ε;

Φ)-separated. In particular, it follows that s2N( ε2 )(w, ε,Φ) ≥ 23. Hence, we
have

S2N( ε2 )(ε,Φ) =
1

#(I1,2N( ε2 ))

∑
w∈I1,2N( ε

2
)

s2N( ε2 )(w, ε,Φ)

≥ 1

#(I1,2N( ε2 ))

∑
w∈I1,2N( ε

2
)

23 = 23.
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Now, fix w ∈ I1,dN( ε2 ) where d ∈ N. Taking j1 = k1 = 0, j2 = k2 = N( ε2 ), j3 =
k3 = 2N( ε2 ), . . ., jd = kd = (d − 1)N( ε2 ), jd+1 = kd+1 = dN( ε2 ) and consider

the preimages xi of x1 and yi of y1 under ϕ
1,(i−1)N( ε2 )
w for i = 2, . . . , d+ 1, i.e.,

ϕ
1,(i−1)N( ε2 )
w (xi) = x1 and ϕ

1,(i−1)N( ε2 )
w (yi) = y1. By repeating the previous

reasoning for (d+ 1)-tuples in which the ith component choosing from the set
{xi, yi}, it follows that sdN( ε2 )(w, ε,Φ) ≥ 2d+1. By taking summation over

w ∈ I1,dN( ε2 ), we have

SdN( ε2 )(ε,Φ) =
1

#(I1,dN( ε2 ))

∑
w∈I1,dN( ε

2
)

sdN( ε2 )(w, ε,Φ)

≥ 1

#(I1,dN( ε2 ))

∑
w∈I1,dN( ε

2
)

2d+1 = 2d+1.

Hence,

lim sup
n→∞

1

n
logSn(ε,Φ) ≥ lim sup

d→∞

1

dN( ε2 )
logSdN( ε2 )(ε,Φ)

≥ lim sup
d→∞

1

dN( ε2 )
log 2d+1 =

log 2

N( ε2 )
.

This proves that the topological entropy is positive and finishes the proof. �

As a direct consequence of Theorem 4.5 and Lemma 3.8 we have the following
corollary.

Corollary 4.6. Let (X,Φ) be an NAIFS of surjective continuous maps on a
compact metric space (X, d) without any isolated point. If the NAIFS (X,Φ)
satisfies the specification property, then it has positive asymptotical topological
entropy. In particular, the NAIFS (X,Φ) is topologically chaotic.

In Theorem 4.3, we show that for surjective NAIFSs with the specification
property, local neighborhoods reflect the complexity of the entire dynamical
system from the viewpoint of entropy theory. Also, in Theorem 4.5 we show
that surjective NAIFSs with the specification property have positive topological
entropy. Hence, by Theorem 4.3, local neighborhoods have positive topological
entropy. More precisely, we have the following corollary.

Corollary 4.7. Let (X,Φ) be an NAIFS of surjective continuous maps on a
compact metric space (X, d) without any isolated point. If the NAIFS (X,Φ)
satisfies the specification property, then htop(cl(V ),Φ) > 0 for any x ∈ X and
any open neighborhood V of x.

5. Topological pressure

The notion of topological pressure that is a fundamental notion in ther-
modynamic formalism is a generalization of topological entropy for dynamical
systems [44]. Topological pressure is the main tool in studying dimension of
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invariant sets and measures for dynamical systems in dimension theory. Our
purpose in this section is to introduce and study the notion of topological
pressure for NAIFSs on a compact topological space.

Consider an NAIFS (X,Φ) of continuous maps on a compact metric space
(X, d). Let C(X,R) be the space of real-valued continuous functions of X. For
ψ ∈ C(X,R) and finite word w ∈ Im,n we denote Σnj=0ψ(ϕm,jw )(x) by Sw,nψ(x).
Also, for subset U of X we put Sw,nψ(U) = supx∈U Sw,nψ(x).

5.1. Definition of topological pressure using spanning sets

For ε > 0, n ≥ 1, w ∈ I1,n and ψ ∈ C(X,R), put

Qn(Φ;w,ψ, ε) := inf
F

{∑
x∈F

eSw,nψ(x) : F is a (w, n, ε; Φ)-spanning set for X

}
and taking

Qn(Φ;ψ, ε) :=
1

#(I1,n)

∑
w∈I1,n

Qn(Φ;w,ψ, ε).

Remark 5.1. By definitions the following statements are true.

(1) 0 < Qn(Φ;w,ψ, ε) ≤ ‖eSw,nψ‖rn(w, ε,Φ) <∞,
where ‖ψ‖ = maxx∈X |ψ(x)|.
Hence, 0 < Qn(Φ;ψ, ε) ≤ e(n+1)‖ψ‖Rn(ε,Φ) <∞.

(2) If ε1 < ε2, then Qn(Φ;w,ψ, ε1) ≥ Qn(Φ;w,ψ, ε2).
Hence, Qn(Φ;ψ, ε1) ≥ Qn(Φ;ψ, ε2).

(3) Qn(Φ;w, 0, ε) = rn(w, ε,Φ). Hence, Qn(Φ; 0, ε) = Rn(ε,Φ).
(4) In the definition of Qn(Φ;w,ψ, ε), it suffices to take the infinium over

those spanning sets which do not have proper subsets that (w, n, ε; Φ)-
span X. This is because eSw,nψ(x) > 0.

Set

Q(Φ;ψ, ε) := lim sup
n→∞

1

n
logQn(Φ;ψ, ε).

Remark 5.2. By Remark 5.1, the following two facts hold.

(1) Q(Φ;ψ, ε) ≤ ‖ψ‖+ lim supn→∞
1
n logRn(ε,Φ) <∞.

(2) If ε1 < ε2, then Q(Φ;ψ, ε1) ≥ Q(Φ;ψ, ε2), i.e., Q(Φ;ψ, ε) is non-
decreasing with respect to ε.

Definition 5.3. For ψ ∈ C(X,R), the topological pressure of an NAIFS (X,Φ)
with respect to ψ is defined as

Ptop(Φ, ψ) := lim
ε→0

Q(Φ;ψ, ε) = lim
ε→0

lim sup
n→∞

1

n
logQn(Φ;ψ, ε).

This is a natural extension of the definition of topological pressure for au-
tonomous dynamical systems, non-autonomous discrete dynamical systems and
semigroup actions. Also, it is clear that Ptop(Φ, 0) = htop(X,Φ).
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Remark 5.4. Note that by part (2) of Remark 5.2, the topological pressure
Ptop(Φ, ψ) always exists, but it could be infinite. Indeed, assume #(I(j)) =

1, Φ(j) = {ϕ} for all j ≥ 1 which yields an autonomous dynamical system
and take the observer ψ = 0. In this case, we have Ptop(Φ, ψ) = htop(ϕ)
which is the classical topological entropy in the sense of Bowen. Thus, if we
choose an autonomous system ϕ with the observer ψ = 0 that possesses infinite
topological entropy [13], then Ptop(Φ, ψ) =∞, where the NAIFS Φ defined as
above.

5.2. Definition of topological pressure using separated sets

For ε > 0, n ≥ 1, w ∈ I1,n and ψ ∈ C(X,R), put

Pn(Φ;w,ψ, ε) := sup
E

{∑
x∈E

eSw,nψ(x) : E is a (w, n, ε; Φ)-separated set for X

}
and taking

Pn(Φ;ψ, ε) :=
1

#(I1,n)

∑
w∈I1,n

Pn(Φ;w,ψ, ε).

Remark 5.5. By definitions the following statements are true.
(1) If ε1 < ε2, then Pn(Φ;w,ψ, ε1) ≥ Pn(Φ;w,ψ, ε2). Hence, Pn(Φ;ψ, ε1) ≥

Pn(Φ;ψ, ε2).
(2) Pn(Φ;w, 0, ε) = sn(w, ε,Φ). Hence, 0 < Pn(Φ; 0, ε) = Sn(ε,Φ).
(3) In the definition of Pn(Φ;w,ψ, ε), it suffices to take the supremum

over all (w, n, ε; Φ)-separated sets having maximal cardinality. This is because
eSw,nψ(x) > 0.

(4) Qn(Φ;ψ, ε) ≤ Pn(Φ;ψ, ε).

Proof. Fix w ∈ I1,n. Since eSw,nψ(x) > 0 and by the fact that each (w, n, ε; Φ)-
separated set which cannot be enlarged to another (w, n, ε; Φ)-separated set
must be a (w, n, ε; Φ)-spanning set for X, we have

Qn(Φ;w,ψ, ε) ≤ Pn(Φ;w,ψ, ε).

Hence, by the definition of Qn(Φ;ψ, ε) and Pn(Φ;ψ, ε), we have Qn(Φ;ψ, ε) ≤
Pn(Φ;ψ, ε). �

(5) If δ = sup{|ψ(x)− ψ(y)| : d(x, y) < ε
2}, then

Pn(Φ;ψ, ε) ≤ e(n+1)δQn(Φ;ψ,
ε

2
).

Proof. Fix w ∈ I1,n. Let E be a (w, n, ε; Φ)-separated set and F is a (w, n, ε2 ; Φ)-
spanning set. Define φ : E → F by choosing, for each x ∈ E, some point
φ(x) ∈ F with dw,n(x, φ(x)) < ε

2 . The point φ(x) ∈ F that satisfies in this
condition is unique. Then φ is injective and∑
y∈F

eSw,nψ(y) ≥
∑

y∈φ(E)

eSw,nψ(y) ≥
(

min
x∈E

eSw,nψ(φ(x))−Sw,nψ(x)
)∑
x∈E

eSw,nψ(x)
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≥ e−(n+1)δ
∑
x∈E

eSw,nψ(x).

Therefore Pn(Φ;w,ψ, ε) ≤ e(n+1)δQn(Φ;w,ψ, ε2 ). Hence, by the definition of

Qn(Φ;ψ, ε2 ) and Pn(Φ;ψ, ε), we have Pn(Φ;ψ, ε) ≤ e(n+1)δQn(Φ;ψ, ε2 ). �

Then, set

P (Φ;ψ, ε) := lim sup
n→∞

1

n
logPn(Φ;ψ, ε).

Remark 5.6. As above, the following statements are true.

(1) Q(Φ;ψ, ε) ≤ P (Φ;ψ, ε), by part (4) of Remark 5.5.
(2) If δ = sup{|ψ(x)−ψ(y)| : d(x, y) < ε

2}, then P (Φ;ψ, ε) ≤ δ+Q(Φ;ψ, ε2 ),
by part (5) of Remark 5.5.

(3) If ε1 < ε2, then P (Φ;ψ, ε1) ≥ P (Φ;ψ, ε2), by part (1) of Remark 5.5.

Theorem 5.7. If ψ ∈ C(X,R), then Ptop(Φ, ψ) = limε→0 P (Φ;ψ, ε).

Proof. The limit exists by part (3) of Remark 5.6. By part (1) of Remark
5.6, we have Ptop(Φ, ψ) ≤ limε→0 P (Φ;ψ, ε). Also, by part (2) of Remark
5.6, for any δ > 0, we have limε→0 P (Φ;ψ, ε) ≤ δ + Ptop(Φ, ψ), which implies
limε→0 P (Φ;ψ, ε) ≤ Ptop(Φ, ψ). Hence, Ptop(Φ, ψ) = limε→0 P (Φ;ψ, ε). The
proof is completed. �

5.3. Definition of topological pressure using open covers

In this subsection we introduce a special class of continuous potentials and
provide a formula via open covers to compute the topological pressure of an
NAIFS respect to this class of continuous potentials. Let (X,Φ) be an NAIFS of
continuous maps on a compact metric space (X, d). Given ε > 0 and w ∈ Im,n,
we say that an open cover U of X is a (w, n, ε)-cover if any open set U ∈ U
has dw,n-diameter smaller than ε, where dw,n is the Bowen-metric introduced
in (5). To obtain another characterization of the topological pressure using
open covers, we need continuous potentials satisfying a regularity condition.
Given ε > 0, w ∈ Im,n and ψ ∈ C(X,R) we define the variation of Sw,nψ on
dynamical balls of radius ε (see (6)) alongside the word w by

Varw,n(ψ, ε) := sup
dw,n(x,y)<ε

|Sw,nψ(x)− Sw,nψ(y)|.

We say that potential ψ has uniform bounded variation on dynamical balls
of radius ε if there exists C > 0 so that

sup
n≥1,w∈I1,n

Varw,n(ψ, ε) ≤ C.

The potential ψ has the uniformly bounded variation property whenever there
exists ε > 0 so that ψ has the uniform bounded variation on dynamical balls
of radius ε.
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In the following proposition, we use open covers to provide a formula for
computation the topological pressure of an NAIFS respect to this class of con-
tinuous potentials.

Proposition 5.8. Let (X,Φ) be an NAIFS of continuous maps on a compact
metric space (X, d) and ψ : X → R be a continuous potential with the uniformly
bounded variation property. Then,

Ptop(Φ, ψ) = lim
ε→0

lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

inf
U

∑
U∈U

eSw,nψ(U)

)
,

where the infimum is taken over all open covers U of X such that U is a
(w, n, ε)-cover.

Proof. By Theorem 5.7 we know that

Ptop(Φ, ψ) = lim
ε→0

lim sup
n→∞

1

n
logPn(Φ;ψ, ε),

where

Pn(Φ;ψ, ε) =
1

#(I1,n)

∑
w∈I1,n

Pn(Φ;w,ψ, ε) =
1

#(I1,n)

∑
w∈I1,n

sup
E

∑
x∈E

eSw,nψ(x)

and the supremum is taken over all sets E that are (w, n, ε; Φ)-separated. For
simplicity, we denote

Cn(Φ;w,ψ, ε) := inf
U

∑
U∈U

eSw,nψ(U) and

Cn(Φ;ψ, ε) :=
1

#(I1,n)

∑
w∈I1,n

Cn(Φ;w,ψ, ε),

where the infimum is taken over all open covers U of X such that U is a
(w, n, ε)-cover.

Take ε > 0 and w ∈ I1,n. Given a (w, n, ε; Φ)-maximal separated set E,
it follows that U := {B(x;w, n, ε)}x∈E is a (w, n, 2ε)-cover. By the uniformly
bounded variation property we have

Sw,nψ(B(x;w, n, ε)) = sup
z∈B(x;w,n,ε)

Sw,nψ(z) ≤ Sw,nψ(x) + C

for some constant C > 0, depending only on ε. Consequently, we have

(9) lim sup
n→∞

1

n
logCn(Φ;ψ, 2ε) ≤ lim sup

n→∞

1

n
logPn(Φ;ψ, ε).

On the other hand, if U is a (w, n, ε)-cover of X, then for any (w, n, ε; Φ)-
separated set E we have that N (E) ≤ N (U), since the diameter of any U ∈ U
in the metric dw,n is less than ε. By the uniformly bounded variation property,
we have

(10) lim sup
n→∞

1

n
logPn(Φ;ψ, ε) ≤ lim sup

n→∞

1

n
logCn(Φ;ψ, ε).
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Now, combining equations (9) and (10), we get that

lim sup
n→∞

1

n
logPn(Φ;ψ, ε) ≤ lim sup

n→∞

1

n
logCn(Φ;ψ, ε)

≤ lim sup
n→∞

1

n
logPn(Φ;ψ,

ε

2
),

this completes the proof. �

5.4. The topological pressure of ∗-expansive NAIFSs

In this subsection, we will be mostly interested in providing conditions to
compute the topological pressure of an NAIFS as a limit at a definite size scale.
Hence, we begin with the following definition.

Definition 5.9. Let (X,Φ) be an NAIFS of continuous maps on a compact
metric space (X, d). For δ > 0, the NAIFS (X,Φ) is said to be δ-expansive if
for any γ > 0 and any x, y ∈ X with d(x, y) ≥ γ, there exists k0 ≥ 1 (depending
on γ) such that dw,n(x, y) > δ for each w ∈ Im,n with n ≥ k0. Also, an NAIFS
is said to be ∗-expansive if it is δ-expansive for some δ > 0.

In the next section, we illustrate some examples of NAIFSs which fit in our
situation and hence they possess the ∗-expansive property.

In the rest of this section, we prove that the topological pressure of an
∗-expansive NAIFS can be computed as the topological complexity that is
observable at a definite size scale. More precisely, we get the next result.

Theorem 5.10. Let (X,Φ) be a δ-expansive NAIFS of continuous maps on
a compact metric space (X, d) for some δ > 0. Then, for every continuous
potential ψ : X → R and every 0 < ε < δ,

Ptop(Φ, ψ) = lim sup
n→∞

1

n
logPn(Φ;ψ, ε)

= lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

sup
E

∑
x∈E

eSw,nψ(x)

)
,

where the supremum is taken over all sets E that are (w, n, ε; Φ)-separated.

Proof. Since X is compact and ψ : X → R is continuous, without loss of
generality, we assume that ψ is non-negative. Fix γ and ε with 0 < γ < ε < δ.
Then by part (3) of Remark 5.6 it is enough to prove the following inequality

lim sup
n→∞

1

n
logPn(Φ;ψ, γ) ≤ lim sup

n→∞

1

n
logPn(Φ;ψ, ε).

By the definition of δ-expansivity, for any two distinct points x, y ∈ X with
d(x, y) ≥ γ, there exists k0 ≥ 1 (depending on γ) such that dw,n(x, y) > δ
for each w ∈ Im,n with n ≥ k0. Take w ∈ I1,n+k with n, k ≥ k0. Given
any (w|n, n, γ; Φ)-separated set E, we claim that the set E is (w, n + k, ε; Φ)-
separated. In fact, given x, y ∈ E there exists a 0 ≤ j ≤ n so that d(ϕ1,j

w (x),
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ϕ1,j
w (y)) > γ. Using that n+k−j ≥ k0 and the definition of δ-expansivity, it fol-

lows that dw|j ,n+k−j(ϕ
1,j
w (x), ϕ1,j

w (y)) > δ > ε. This implies that dw,n+k(x, y) >
ε. Hence, E is (w, n+ k, ε; Φ)-separated, that prove the claim. Since ψ is non-
negative, we have

(11) eSw,n+kψ(x) = eSw,nψ(x)eSw|n,kψ(ϕ1,n
w (x)) ≥ eSw,nψ(x),

which implies that Pn(Φ;ψ, γ) ≤ Pn+k(Φ;ψ, ε) because by relation (11) we
have

Pn(Φ;ψ, γ) =
1

#(I1,n)

∑
w∈I1,n

sup
E

∑
x∈E

eSw,nψ(x)

=
#(In+1,k)

#(I1,n+k)

∑
w∈I1,n

sup
E

∑
x∈E

eSw,nψ(x)

=
1

#(I1,n+k)

∑
w∈I1,n+k

sup
E

∑
x∈E

eSw,nψ(x)

≤ 1

#(I1,n+k)

∑
w∈I1,n+k

sup
E

∑
x∈E

eSw,n+kψ(x)

= Pn+k(Φ;ψ, ε).

Thus,

lim sup
n→∞

1

n
logPn(Φ;ψ, γ) ≤ lim sup

n→∞

1

n+ k
logPn+k(Φ;ψ, ε)

≤ lim sup
n→∞

1

n
logPn(Φ;ψ, ε).

This completes the proof. �

Remark 5.11. We observe that in view of the previous characterization given in
Proposition 5.8, the same result as Theorem 5.10 also holds if we consider open
covers instead of separated sets. More precisely, let (X,Φ) be a δ-expansive
NAIFS of continuous maps on a compact metric space (X, d) for some δ > 0.
Then, for every continuous potential ψ : X → R with the uniformly bounded
variation property and every 0 < ε < δ,

Ptop(Φ;ψ) = lim sup
n→∞

1

n
log

(
1

#(I1,n)

∑
w∈I1,n

inf
U

∑
U∈U

eSw,nψ(U)

)
,

where the infimum is taken over all open covers U of X such that U is a
(w, n, ε)-cover.

6. Applications

The main aim of this section is to introduce a special class of NAIFSs hav-
ing the specifcation and ∗-expansive properties. Rodrigues and Varandas [34]
addressed the specification properties and thermodynamical formalism to deal
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both with finitely generated group and semigroup actions. They introduced
the notions of specification and orbital specification properties for the context
of group and semigroup actions. Then they proved that semigroups of expand-
ing maps satisfy the orbital specification properties. We extend this result to
uniformly expanding NAIFS.

Definition 6.1. Let M be a compact Riemannian manifold and f : M → M
be a C1-local diffeomorphism. We say that f is expanding if there exist σ > 1
and some Riemannian metric on M such that ‖Df(x)v‖ ≥ σ‖v‖ for every
x ∈M and every vector v tangent to M at the point x.

We recall the next statement from [43]. Let f : M → M be a expanding
C1-local diffeomorphism on a compact Riemannian manifold M . Then, there
exist constants σ > 1 and ρ > 0 such that for every p ∈M the image of the ball
B(p, ρ) contains a neighborhood of the closure of B(f(p), ρ) and d(f(x), f(y)) ≥
σd(x, y) for every x, y ∈ B(p, ρ). Moreover, for any pre-image x of any point
y ∈ M , there exists a map h : B(y, ρ) → M of class C1 such that f ◦ h = id,
h(y) = x and

(12) d(h(y1), h(y2)) ≤ σ−1d(y1, y2) for every y1, y2 ∈ B(y, ρ).

The factors σ and ρ will be called the expansion factor and injectivity constant
of the expanding C1-local diffeomorphism f , respectively. Also the map h is
called inverse branch of the C1-local diffeomorphism f . Inequality (12) implies
that the inverse branches are contractions, with uniform contraction rate σ−1.

Now, we introduce a class of NAIFSs that will be studied in the present
section. Let M be a compact Riemannian manifold. For any σ > 1 and ρ > 0,
we denote by E(σ, ρ) the set of all expanding C1-local diffeomorphisms on M
with expanding factor σ and injectivity constant ρ.

Definition 6.2. We say that an NAIFS (M,Φ) is uniformly expanding if there

exist σ > 1 and ρ > 0 such that ϕ
(j)
i ∈ E(σ, ρ) for each j ∈ N and i ∈ I(j).

The factors σ and ρ will be called the uniform expansion factor and injectivity
constant of the NAIFS (M,Φ), respectively.

In what follows, we consider a uniformly expanding NAIFS (M,Φ) with
uniform expansion factor σ > 1 and injectivity constant ρ > 0. By definition,

for each j ∈ N and i ∈ I(j), the restriction of ϕ
(j)
i to each ball B(x, ρ) of radius

ρ is injective and its image contains the closure of B(ϕ
(j)
i (x), ρ). Thus, the

restriction ϕ
(j)
i to B(x, ρ) ∩ (ϕ

(j)
i )−1(B(ϕ

(j)
i (x), ρ)) is a diffeomorphism onto

B(ϕ
(j)
i (x), ρ). We denote the inverse branch of ϕ

(j)
i at x by

h
(j)
i,x : B(ϕ

(j)
i (x), ρ)→ B(x, ρ).

It is clear that h
(j)
i,x(ϕ

(j)
i (x)) = x and ϕ

(j)
i ◦ h

(j)
i,x = id. Definition 6.2 implies

that h
(j)
i,x is σ−1-contraction:

(13) d(h
(j)
i,x(z), h

(j)
i,x(w)) ≤ σ−1d(z, w) for every z, w ∈ B(ϕ

(j)
i (x), ρ).
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More generally, for finite word w = wmwm+1 · · ·wm+n−1 ∈ Im,n with m,n ≥
1, we call the inverse branch of ϕm,nw at x the composition

hm,nw,x :=h(m)
wm,x◦h

(m+1)

wm+1,ϕ
m,1
w (x)

◦· · ·◦h(m+n−1)

wm+n−1,ϕ
m,n−1
w (x)

: B(ϕm,nw (x), ρ)→ B(x, ρ).

Observe that hm,nw,x (ϕm,nw (x)) = x and ϕm,nw ◦ hm,nw,x = id. Moreover, for each
0 ≤ j ≤ n we have

ϕm,jw ◦ hm,nw,x = hm+j,n−j
w,ϕm,jw (x)

and hm+j,n−j
w,ϕm,jw (x)

: B(ϕm,nw (x), ρ)→ B(ϕm,jw (x), ρ),

where hm+j,n−j
w,ϕm,jw (x)

:= h
(m+j)

wm+j ,ϕ
m,j
w (x)

◦ · · · ◦ h(m+n−1)

wm+n−1,ϕ
m,n−1
w (x)

. Hence,

(14) d(ϕm,jw ◦ hm,nw,x (z), ϕm,jw ◦ hm,nw,x (w)) ≤ σj−nd(z, w)

for every z, w ∈ B(ϕm,nw (x), ρ) and every 0 ≤ j ≤ n.
In the rest of this section, we show that uniformly expanding NAIFSs satisfy

the specifcation and ∗-expansive properties. To do this we need the following
auxiliary two lemmas.

Lemma 6.3. Let (M,Φ) be a uniformly expanding NAIFS with the uniform
expansion factor σ > 1 and injectivity constant ρ > 0. Then for every x ∈M ,
w ∈ Im,n and 0 < ε ≤ ρ we have ϕm,nw (B(x;w, n, ε)) = B(ϕm,nw (x), ε), where
B(x;w, n, ε) is the dynamical (n + 1)-ball with radius ε corresponding to the
finite word w around x given by (6).

Proof. Let w ∈ Im,n and B(x;w, n, ε) be the dynamical (n+1)-ball with radius
ε corresponding to the finite word w around x. The inclusion ϕm,nw (B(x;w, n, ε))
⊆ B(ϕm,nw (x), ε) is an immediate consequence of the definition of a dynamical
ball. To prove the converse, consider the inverse branch hm,nw,x : B(ϕm,nw (x), ρ)→
B(x, ρ) of ϕm,nw at x. Given any y ∈ B(ϕm,nw (x), ε), let z = hm,nw,x (y). Then
ϕm,nw (z) = y. By inequality (14), for 0 ≤ j ≤ n, we have

d(ϕm,jw (z), ϕm,jw (x)) ≤ σj−nd(ϕm,nw (z), ϕm,nw (x)) ≤ d(y, ϕm,nw (x)) < ε.

Hence, z = hm,nw,x (y) ∈ B(x;w, n, ε) that implies

ϕm,nw (B(x;w, n, ε)) ⊇ B(ϕm,nw (x), ε).

This finishes the proof of the lemma. �

The following lemma of the topologically exact property is now folklore and
we omit its proof, see [34, Lemma 18].

Lemma 6.4. Let (M,Φ) be a uniformly expanding NAIFS on a compact con-
nected Riemannian manifold M . Then for any δ > 0 there is N = N(δ) ∈ N
so that ϕm,nw (B(x, δ)) = M for every x ∈M and w ∈ Im,n with n ≥ N .

Note that Lemma 6.4 also implies that each expanding C1-local diffeomor-
phism on a compact connected Riemannian manifold M is surjective.



NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS 1591

Theorem 6.5. Let (M,Φ) be a uniformly expanding NAIFS on a compact con-
nected Riemannian manifold M with the uniform expansion factor σ > 1 and
injectivity constant ρ > 0. Then the NAIFS (M,Φ) satisfies the specification
property.

Proof. The proof of the theorem can be followed from the previous two lem-
mas. Fix δ > 0, without loss of generality we assume that δ < ρ. Let
w = w1w2 · · · ∈ I1,∞ and N = N(δ) be given by Lemma 6.4. Suppose that
points x1, x2, . . . , xs ∈ M with s ≥ 2 and sequence 0 = j1 ≤ k1 < j2 ≤ k2 <
· · · < js ≤ ks of integers with jn+1− kn ≥ N for n = 1, . . . , s− 1 are given. By
Lemma 6.3 we have

(15)
ϕji+1,ki−ji
w (B(ϕ1,ji

w (xi);w|ji , ki − ji, δ))

= B(ϕji+1,ki−ji
w (ϕ1,ji

w (xi)), δ) for 1 ≤ i ≤ s.

Also by Lemma 6.4 we get

(16) ϕki+1,ji+1−ki
w (B(ϕji+1,ki−ji

w (ϕ1,ji
w (xi)), δ)) = M for i = 1, . . . , s− 1.

Equations (15) and (16) imply that for given x̄s ∈ B(ϕ1,js
w (xs), w|js , ks−js, δ)

we have

x̄s = ϕks−1+1,js−ks−1
w (x̃s−1)

with x̃s−1 ∈ B(ϕ
js−1+1,ks−1−js−1
w (ϕ

1,js−1
w (xs−1)), δ). Hence

x̄s = ϕks−1+1,js−ks−1
w ◦ ϕjs−1+1,ks−1−js−1

w (x̄s−1)

for some x̄s−1 ∈ B(ϕ
1,js−1
w (xs−1);w|js−1 , ks−1 − js−1, δ).

By repeating this argument, there exists x̄1 ∈ B(x1;w, k1, δ) such that for
i = 2, . . . , s, we have

(17) x̄i = ϕki−1+1,ji−ki−1
w ◦ ϕji−1+1,ki−1−ji−1

w ◦ · · · ◦ ϕk1+1,j2−k1
w ◦ ϕ1,k1

w (x̄1).

Now, by equation (17), x = x̄1 satisfies the definition of specification property
and finishes the proof of the theorem. �

The next result shows that any uniformly expanding NAIFS satisfies the
∗-expansive property.

Proposition 6.6. Let (M,Φ) be a uniformly expanding NAIFS with the uni-
form expansion factor σ > 1 and injectivity constant ρ > 0. Then the NAIFS
(M,Φ) is ∗-expansive.

Proof. By assumption, all inverse branches of ϕ
(j)
i , for each j ∈ N and i ∈ I(j),

are defined on balls of radius ρ and they are σ−1-contraction. Take δ = ρ.
For given γ > 0, take k0 ≥ 1 (depending on γ) so that σ−k0δ < γ. We
claim that for any x, y ∈ M with d(x, y) ≥ γ and w ∈ Im,n with m ≥ 1
and n ≥ k0 we have dw,n(x, y) > δ. Assume, by contradiction, that there
exists w ∈ Im,n with m ≥ 1 and n ≥ k0 such that dw,n(x, y) ≤ δ. Then, by
inequality (14), we have dw,j(x, y) ≤ σj−ndw,n(x, y) for every 0 ≤ j ≤ n and so
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d(x, y) ≤ σ−ndw,n(x, y) < σ−nδ ≤ σ−k0δ < γ, which is a contradiction. Hence,
the NAIFS (M,Φ) is δ-expansive which completes the proof. �

Now, we illustrate some examples of NAIFSs which fit in our situation.

Example 6.7. Let ϕA : Td → Td be the linear endomorphism of the torus Td =
Rd/Zd induced by some matrix A with integer coefficients and determinant
different from zero. Assume that all the eigenvalues λ1, λ2, . . . , λd of A are
larger than 1 in absolute value. Then, given any 1 < σ < infi |λi|, there exists
an inner product in Rd relative to which ||Av|| ≥ σ||v|| for every v ∈ Rd. This
shows that the transformation ϕA is expanding, see [43, Example 11.1.1].

Now, let A be a non-empty finite set of different matrices enjoying the above
conditions. Then, each NAIFS (Td,Φ) consists of the sequence {Φ(j)}j≥1 of col-

lections Φ(j) ⊆ A is uniformly expanding and by Theorem 6.5 and Proposition
6.6 satisfies the specification and ∗-expansive properties.

Example 6.8. Let A be a non-empty finite set of positive integers k > 1 and
S1 = R/Z. Consider the set A = {fk : S1 → S1 : fk(x) = kx (mod 1), k ∈ A}.
Then, each NAIFS (S1,Φ) consists of the sequence {Φ(j)}j≥1 of collections

Φ(j) ⊆ A is uniformly expanding and by Theorem 6.5 and Proposition 6.6
satisfies the specification and ∗-expansive properties.

Example 6.9. For positive constant 0 < α < 1 the Pomeau-Manneville map
ϕα : [0, 1]→ [0, 1] given by

ϕα(x) =

{
x+ 2αx1+α 0 ≤ x ≤ 1/2,

2x− 1 1/2 < x ≤ 1.

Note that, since each Pomeau-Manneville map is semiconjugated to the full
shift on two symbols, it satisfies the specification property (as an autonomous
dynamical system), see [7, Example 3.4]. Here, we give an NAIFS (S1,Φ) that
consists of circle Pomeau-Manneville maps having the specification property.

Indeed, let us take 0 < β < 1 and the family of real numbers

{α(j)
i : 0 < β < α

(j)
i < 1}i∈I(j) , j ∈ N,

where I(j) is a non-empty finite index set for all j ≥ 1. Assume ϕ
(j)
i = ϕ

α
(j)
i

for all j ≥ 1 and i ∈ I(j). We identify the unit interval [0, 1] with the circle S1,
so that the maps become continuous. Take the NAIFS (S1,Φ) consists of the
sequence {Φ(j)}j≥1 of collections Φ(j) = {ϕ

α
(j)
i
}i∈I(j) of Pomeau-Manneville

circle maps. We claim that the NAIFS (S1,Φ) satisfies the specification prop-
erty. First, we observe that for every x ∈ S1, ε > 0 and w ∈ Im,n with m,n ≥ 1
the dynamical ball B(x;w, n, ε) satisfies ϕm,nw (B(x;w, n, ε)) = B(ϕm,nw (x), ε).
Second, although each Pomeau-Manneville map ϕ

α
(j)
i

is not uniformly expand-

ing, it enjoys the following scaling property: given δ > 0, diam(ϕ
α

(j)
i

[0, δ]) ≥
δ
2 + δ

2 [1 + (1 + β)δβ ] = cδdiam[0, δ] and diam(ϕ
α

(j)
i

(I)) ≥ σδdiam(I) for every
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ball I ⊂ S1 of diameter larger or equal to δ, where σδ > 1 (depending on δ) and
cδ := (1+δ(1+β)δβ) > 1, see [34]. Note that by the choice of the collections Φ(j)

as above, their derivatives satisfy dϕ
α

(j)
i

(x) ≥ (1+(1+β)2βxβ) ≥ (1+(1+β)δβ)

for every x ∈ [ δ2 ,
1
2 ] and dϕ

α
(j)
i

(x) = 2 for every x ∈ ( 1
2 , 1]. Using the previous

expression recursively, we deduce that there exists Nδ > 0 such that for each
w ∈ Im,n with n ≥ Nδ one has that ϕm.nw (B(x, δ)) = S1 for each x ∈ S1. This
means that the NAIFS (S1,Φ) is topologically exact. Thus, we can apply the
approach used in the proof of Theorem 6.5 to conclude the NAIFS (S1,Φ) has
the specification property.

In what follows, we give some comments about the specification property of
NAIFSs and semigroup (group) actions.

Given a continuous map g on a topological space X, we say that g has finite
order if there exists n ≥ 1 so that gn = idX . Let us mention that, in the context
of group actions, the existence of elements of generators of finite order is not an
obstruction for the group action to have the specification property in the sense
of [34, Definition 1] that extends the specifcation property introduced by Ruelle
[35] to more general group actions and differs from the orbital specification
properties which introduced by Rodrigues and Varandas [34] (e.g., the Z2-
action on T2 = R2/Z2 whose generators are a hyperbolic automorphism and
the reflection on the real axis satisfies the specification property in the sense
of [34, Definition 1], see [34]). However, in the context of NAIFSs, if there
exists g ∈ ∩j≥1Φ(j) of finite order, then this can not be true, see the following
example.

Example 6.10. Let (X,Φ) be an NAIFS of continuous maps on a compact
metric space (X, d), and let g : X → X be a continuous map of finite order
n such that g ∈ ∩j≥1Φ(j). We claim that the NAIFS (X,Φ) does not enjoy
the specification property. Assume, by contradiction, that the NAIFS (X,Φ)
satisfies the specification property. Let δ > 0 be small and fixed so that there
are at least two distinct 2δ-separated points x1, x2 ∈ X, i.e., d(x1, x2) > 2δ.
Let N( δ2 ) ≥ 1 be given by the definition of specification property. Then, for

the word w ∈ I1,∞ corresponding to the constant sequence (g, g, g, . . .) and
integers 0 = j1 = k1 < j2 = k2 with j2 − k1 = rn ≥ N( δ2 ), for some r ∈ N,

there is a point x ∈ X such that d(x, x1) ≤ δ
2 and d(ϕ1,rn

w (x), ϕ1,rn
w (x2)) ≤ δ

2 .
Consequently,

δ < d(x, x2) = d(grn(x), grn(x2)) = d(ϕ1,rn
w (x), ϕ1,rn

w (x2)) ≤ δ

2
,

that is a contradiction.

Note that in [34] the authors introduced three kinds of specification prop-
erties for group and semigroup actions: specification property in the sense
of Ruelle, strong orbital specification property and weak orbital specification
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property. For a semigroup action, the claim in Example 6.10 holds whenever
we consider the strong orbital specification property.

We mention that, an NAIFS generalizes the both concepts of finitely gen-
erated semigroups and non-autonomous discrete dynamical systems. The next
example shows that the dynamic of an NAIFS differs from semigroup actions.

Example 6.11. Let f : S1 → S1 be a C1-expanding map of the circle, and let
Rα : S1 → S1 be the rotation of angle α. Then, the semigroup G generated
by G1 = {f,Rα} does not satisfy the strong orbital specification property, see
[34, Example 31].

Now, let (S1,Φ) be a uniformly expanding NAIFS with the uniform expan-
sion factor σ > 1 and injectivity constant ρ > 0. Then, by Theorem 6.5, the
NAIFS (S1,Φ) satisfies the specification property. Take Ψ(1) = Φ(1) ∪ {Rα}
and Ψ(j) = Φ(j) for all j ≥ 2. We claim that the NAIFS (S1,Ψ) enjoys the
specification property. Indeed, let δ > 0 be fixed, without loss of generality we
assume that δ < ρ, and take N(δ) the constant given by Lemma 6.4 for the
NAIFS (S1,Φ). For the NAIFS (S1,Ψ), take a word w = w1w2 · · · ∈ I1,∞,
points x1, x2, . . . , xs ∈ S1 with s ≥ 2 and a sequence 0 = j1 ≤ k1 < j2 ≤ k2 <
· · · < js ≤ ks of integers with jn+1 − kn ≥ Nδ for n = 1, . . . , s − 1, where

Nδ = N(δ) + 1. By Theorem 6.5, if ψ
(1)
w1 6= Rα, then there is a point x ∈ X

such that d(ψ1,i
w (x), ψ1,i

w (xm)) ≤ δ for each 1 ≤ m ≤ s and any jm ≤ i ≤ km.

If ψ
(1)
w1 = Rα, then there is a dynamical (k1 + 1)-ball B(x1;w, k1, ε) with ε ≤ δ

such that ψ1,k1
w (B(x1;w, k1, ε)) = B(ψ1,k1

w (x1), δ) (note that, Rα is an isometry
and (S1,Φ) is a uniformly expanding NAIFS). Now, by the approach used in
Theorem 6.5, there is a point x ∈ S1 such that d(ψ1,i

w (x), ψ1,i
w (xm)) ≤ δ for

each 1 ≤ m ≤ s and any jm ≤ i ≤ km. This proves the claim.

Acknowledgements. The authors would like to thank the respectful referee
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