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Abstract. We are concerned with the following elliptic equations:

(−∆)spu+ V (x)|u|p−2u = λg(x, u) in RN ,

where (−∆)sp is the fractional p-Laplacian operator with 0 < s < 1 < p <

+∞, sp < N , the potential function V : RN → (0,∞) is a continuous

potential function, and g : RN×R→ R satisfies a Carathéodory condition.

We show the existence of at least one weak solution for the problem above
without the Ambrosetti and Rabinowitz condition. Moreover, we give a

positive interval of the parameter λ for which the problem admits at least

one nontrivial weak solution when the nonlinearity g has the subcritical
growth condition.

1. Introduction

A great attention has been drawn to the study of nonlocal type operators in
view of the mathematical theory to concrete some phenomena: social sciences,
quantum mechanics, materials science, continuum mechanics, phase transition
phenomena, image process and Levy process [6, 8, 14, 21, 24, 32, 33] and the
references therein. In particular, the fractional Schrödinger equation which is
initially introduced by Laskin [24] has received considerable attention in recent
years (see e.g. [20, 40,47]).

Motivated by huge interest in the current literature, exploiting variational
methods, we investigate the existence of nontrivial weak solutions for the frac-
tional p-Laplacian problems. To be more precise, we consider the existence
results of a nontrivial weak solution for the following nonlinear elliptic equa-
tions of the fractional p-Laplace type:

(Pλ) (−∆)spu+ V (x)|u|p−2u = λg(x, u) in RN ,
where λ is a real parameter, 0 < s < 1 < p < +∞, sp < N , the potential
function V : RN → (0,∞) is continuous, g : RN × R → R is a Carathéodory
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function, and (−∆)sp is the fractional p-Laplacian operator defined as

(−∆)spu(x) = 2 lim
ε↘0

∫
RN\BNε (x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy

for x ∈ RN , where BNε (x) := {y ∈ RN : |y − x| ≤ ε}. Many researchers have
been extensively studied the fractional p-Laplacian type problems in various
way; see [4, 5, 8, 13,14,19,22,26,36,38,44,47] and the references therein.

Since the seminal work of Ambrosetti and Rabinowitz in [3], critical point
theory has become one of the most effective analytic tools for establishing the
existence of solutions to elliptic equations of variational type. Afterward, many
results for the existence of nontrivial solutions to nonlinear elliptic problems
involving the fractional p-Laplacian type have been obtained; see for example [4,
5,7,15,20,22,26,38,41,42,46]. Especially, the existence and multiplicity results
for the fractional p-Laplacian type problems have been studied by Iannizzotto
et al. [22] and Servadei [38] for a bounded domain in RN . The key ingredient
for obtaining these results is the Ambrosetti and Rabinowitz condition ((AR)-
condition for short) in [3];

(AR) There exist positive constants C0 and η such that η > p and

0 < ηG(x, t) ≤ g(x, t)t for x ∈ Ω and |t| ≥ C0,

where G(x, t) =
∫ t

0
g(x, s) ds, and Ω is a bounded domain in RN .

It is well known that the (AR)-condition is essential to verify the compact-
ness condition of the Euler-Lagrange functional which plays a central role in
applying critical point theory. However this condition is very restrictive and
eliminates many nonlinearities. Miyagaki and Souto [34] established the exis-
tence of a nontrivial solution for the superlinear problems without assuming
the (AR)-condition. Inspired by this paper, the existence of at least one solu-
tion and infinitely many solutions for the p-Laplacian problem in a bounded
domain Ω ⊂ RN was presented by Liu-Li [31] under the following assumption:

(LL) There exists C∗ > 0 such that

G(x, t) ≤ G(x, τ) + C∗

for each x ∈ Ω, 0 < t < τ or τ < t < 0, where G(x, t) = g(x, t)t −
pG(x, t).

See also [50] for p = 2. In this direction, Wei-Su in [42] showed that the
fractional Laplacian problem possesses infinitely many weak solutions. On the
other hand, the existence and multiplicity of weak solutions for the p-Laplacian
equation in case of the whole space RN were obtained by Liu [30] under the
following assumption:

(Je) There exists η ≥ 1 such that

ηG(x, t) ≥ G(x, τt)
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for all (x, t) ∈ RN ×R and τ ∈ [0, 1], where G(x, t) = g(x, t)t− pG(x, t)

and G(x, t) =
∫ t

0
g(x, s)ds.

Recently, under this condition, Torres in [41] obtained the existence result for
the fractional p-Laplacian problem by using the mountain pass theorem. In
fact, the condition above is originally due to Jeanjean [23] in the case of p = 2.
Following in [31], the condition (Je) is weaker than the condition that for each
x ∈ RN ,

g(x, t)

|t|p−1
is an increasing function of t ∈ RN \ {0}.

In the last few decades, there were extensive studies dealing with the p-Laplac-
ian problems by the assumption (Je); see [27–29] for the p-Laplacian and [2,39,
45] for the p(x)-Laplacian. In this respect, authors in [7, 20, 46] extended the
existence of infinitely many weak solutions to the fractional Laplacian problems.

The purpose of this study is twofold. First, by using the mountain pass
theorem under the Cerami condition that is slightly weaker than the well known
Palais-Smale condition, we present the existence of a nontrivial weak solution
for our problem when the condition on g has mild and different assumptions
from the condition (Je) based on the arguments in [28, 44, 48]. Second, we
concretely provides an estimate of the positive interval of the parameters λ for
which the problem (Pλ) admits at least one nontrivial weak solution when the
nonlinearity g has the subcritical growth condition (but may not always be p-
superlinear). To do this, we give an abstract result that is based on the work of
Bonanno [9]. It is worth noticing that we obtain the existence of the nontrivial
weak solution for our problem without the facts that the energy functional
associated with (Pλ) satisfies the Cerami condition and the mountain pass
geometry that is crucial to apply the mountain pass theorem.

This paper is structured as follows. In Section 2, we recall briefly some basic
results for the fractional Sobolev spaces. And under various conditions on g, we
obtain several existence results of nontrivial weak solutions for problem (Pλ)
by utilizing the variational principle. Also we obtain the existence of at least
one nontrivial weak solution whenever the parameter λ belongs to a positive
interval.

2. Preliminaries and existence of a nontrivial weak solution

In this section, we briefly recall some definitions and basic properties of the
fractional Sobolev spaces. We refer the reader to [1,21,35] for further references.

Let s ∈ (0, 1) and p ∈ (1,+∞). We define the fractional Sobolev space
W s,p(RN ) as follows:

W s,p(RN ) :=

{
u ∈ Lp(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy < +∞

}
,
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endowed with the norm

||u||W s,p(RN ) :=

(
||u||p

Lp(RN )
+ |u|p

W s,p(RN )

) 1
p

,

where

||u||p
Lp(RN )

:=

∫
RN
|u|p dx and |u|p

W s,p(RN )
:=

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy.

Let s ∈ (0, 1) and 1 < p < +∞. Then W s,p(RN ) is a separable and re-
flexive Banach space. Also, the space C∞0 (RN ) is dense in W s,p(RN ), that is
W s,p

0 (RN ) = W s,p(RN ) (see e.g. [1, 35]).

Lemma 2.1 ([17]). Let Ω ⊂ RN a bounded open set with Lipschitz boundary,
s ∈ (0, 1) and p ∈ (1,+∞). Then we have the following continuous embeddings:

W s,p(Ω) ↪→ Lq(Ω) for all q ∈ [1, p∗s], if sp < N ;

W s,p(Ω) ↪→ Lq(Ω) for every q ∈ [1,∞), if sp = N ;

W s,p(Ω) ↪→ C0,λ
b (Ω) for all λ < s−N/p, if sp > N,

where p∗s is the fractional critical Sobolev exponent, that is

p∗s :=

{
Np
N−sp if sp < N,

+∞ if sp ≥ N.

In particular, the space W s,p(Ω) is compactly embedded in Lq(Ω) for any q ∈
[p, p∗s).

Lemma 2.2 ([35, 37]). Let 0 < s < 1 < p < +∞ with ps < N . Then there
exists a positive constant C = C(N, p, s) such that for all u ∈W s,p(RN ),

||u||Lp∗s (RN ) ≤ C |u|W s,p(RN ).

Consequently, the space W s,p(RN ) is continuously embedded in Lq(RN ) for
any q ∈ [p, p∗s]. In particular, we denote the best constant Ss,p in the fractional
Sobolev inequality by

Ss,p = inf
u∈Lp∗s (RN )\{0},|u|Ws,p(RN )<∞

|u|pW s,p(RN )

||u||p
Lp
∗
s (RN )

.

For our analysis, we assume that

(V) V ∈ C(RN ), infx∈RN V (x) > 0, meas
{
x ∈ RN : V (x) ≤M

}
< +∞ for

all M ∈ R.

When V satisfies (V), the basic space

Xs(RN ) :=
{
u ∈W s,p(RN ) : V |u|p ∈ L1(RN )

}
denote the completion of C∞0 (RN ) with respect to the norm

||u||Xs(RN ) :=

(
|u|p

W s,p(RN )
+ ||V

1
pu||p

Lp(RN )

) 1
p

.
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Lemma 2.3 ([41]). Let 0 < s < 1 < p < +∞ with ps < N and suppose that the
assumption (V) holds. Then there is a compact embedding Xs(RN ) ↪→ Lq(RN )
for q ∈ [p, p∗s).

2.1. Existence of a weak solution via the mountain pass theorem

In this subsection, we deal with the existence of a nontrivial weak solution
for the problem (Pλ) under suitable assumptions.

Definition 2.4. Let 0 < s < 1 < p < +∞. We say that u ∈ Xs(RN ) is a weak
solution of the problem (Pλ) if∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

+

∫
RN

V (x) |u(x)|p−2
uv dx = λ

∫
RN

g(x, u)v dx

for all v ∈ Xs(RN ).

Let us define a functional Φs,p : Xs(RN )→ R by

Φs,p(u) =
1

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy +

1

p

∫
RN

V (x) |u(x)|p dx.

So then from Lemma 3.2 of [41], the functional Φs,p is well defined on Xs(RN ),
Φs,p ∈ C1(Xs(RN ),R) and its Fréchet derivative is given by for any v ∈
Xs(RN ),

〈Φ′s,p(u), v〉 =

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

+

∫
RN

V (x) |u(x)|p−2
uv dx.

Lemma 2.5 ([36]). Let 0 < s < 1 < p < +∞ and let the assumption (V)
hold. Then the functional Φ′s,p is of type (S+), i.e., if un ⇀ u in Xs(RN )

and lim supn→∞
〈
Φ′s,p(un)− Φ′s,p(u), un − u

〉
≤ 0, then un → u in Xs(RN ) as

n→∞.

Denoting G(x, t) =
∫ t

0
g(x, s) ds and we suppose that for 1 < p < q < p∗s and

x ∈ RN ,

(G1) g : RN × R→ R satisfies the Carathéodory condition.

(G2) There exist nonnegative functions a ∈ Lq
′
(RN ) ∩ L∞(RN ) and b ∈

L∞(RN ) such that

|g(x, t)| ≤ a(x) + b(x) |t|q−1

for all (x, t) ∈ RN × R, where 1/q + 1/q′ = 1.
(G3) There exists δ > 0 such that

G(x, t) ≤ 0 for x ∈ RN , |t| < δ.
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(G4) lim|t|→∞
G(x,t)
|t|p =∞ uniformly for almost all x ∈ RN .

(G5) There exist c0 ≥ 0, r0 ≥ 0, and τ > N
ps such that

|G(x, t)|τ ≤ c0 |t|τpG(x, t)

for all (x, t) ∈ RN × R and |t| ≥ r0, where G(x, t) = (1/p)g(x, t)t −
G(x, t) ≥ 0.

(G6) There exist µ > p and % > 0 such that

µG(x, t) ≤ tg(x, t) + %tp

for all (x, t) ∈ RN × R.

Under the assumptions (G1) and (G2), we define the functional Ψ : Xs(RN )
→ R by

Ψ(u) =

∫
RN

G(x, u) dx.

Then it follows from the same arguments as those of Proposition 1.12 in [43]
that Ψ ∈ C1(Xs(RN ),R) and its Fréchet derivative is

〈Ψ′(u), v〉 =

∫
RN

g(x, u)v dx

for any u, v ∈ Xs(RN ). Next we define a functional Iλ : Xs(RN )→ R by

Iλ(u) = Φs,p(u)− λΨ(u).

Then we know that the functional Iλ ∈ C1(Xs(RN ),R) and its Fréchet deriv-
ative is

〈I ′λ(u), v〉 =

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

+

∫
RN

V (x) |u(x)|p−2
uv dx− λ

∫
RN

g(x, u)v dx

for any u, v ∈ Xs(RN ).

Remark 2.6. As seen before, there were many existence results of solution for
elliptic problems under the assumption (Je): see [27–29, 39, 45]. The authors
in [28], however gave some examples which satisfy the assumptions (G5), (G6)
not (Je). In that sense, our analysis is motivated by this counterexample. For
example,

g(x, t) = a(x) |t|p−2
t(4 |t|3 + 2t sin t− 4 cos t),

where 0 < infRN a ≤ supRN a <∞.

First of all, in this setting, we need the following lemma.

Lemma 2.7. Let 0 < s < 1 < p < +∞ with ps < N . Assume that (V) and
(G1)–(G2) hold. Then Ψ and Ψ′ are weakly strongly continuous in Xs(RN ).
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Proof. Let {un} be a sequence in Xs(RN ) such that un ⇀ u in Xs(RN ) as
n → ∞. Then {un} is bounded in Xs(RN ) and Lemma 2.3 guarantees that
the embeddings Xs(RN ) ↪→ Lp(RN ) and Xs(RN ) ↪→ Lq(RN ) are compact for
p < q < p∗s. So we know that

(2.1) un → u in Lp(RN ) and un → u in Lq(RN ) as n→∞.

First we prove that Ψ is weakly strongly continuous in Xs(RN ). Let un → u
in Lp(RN ) ∩ Lq(RN ) as n → ∞. By the convergence principle, there exist a
subsequence {unk} and a function v ∈ Lp(RN ) ∩ Lq(RN ) such that unk(x) →
u(x) as k →∞ for almost all x ∈ RN and |unk(x)| ≤ v(x) for all k ∈ N and for
almost all x ∈ RN . Therefore taking (G2) into account, we deduce∫

RN
|G(x, unk)−G(x, u)| dx

≤
∫
RN
|G(x, unk)|+ |G(x, u)| dx

≤
∫
RN

a(x)|unk(x)|+ b(x)|unk(x)|q + a(x)|u(x)|+ b(x)|u(x)|q dx

≤
∫
RN

a(x)|v(x)|+ b(x)|v(x)|q + a(x)|u(x)|+ b(x)|u(x)|q dx

and thus the integral at the left-hand side is dominated by an integrable func-
tion. Since g is the Carathéodory function, we have that G(x, unk)→ G(x, u)
as k →∞ for almost all x ∈ RN by (G1). Therefore, the Lebesgue convergence
theorem tells us that ∫

RN
G(x, unk) dx→

∫
RN

G(x, u) dx

as k →∞. This implies that Ψ is weakly strongly continuous in Xs(RN ).
Next, we show that Ψ′ is weakly strongly continuous in Xs(RN ). Using (G2)

and Hölder’s inequality, we assert that∫
RN
|g(x, un)− g(x, u)|q

′
dx(2.2)

≤ C1

∫
RN
|g(x, un)|q

′
+ |g(x, u)|q

′
dx

≤ C2

∫
RN
|a(x)|q

′
+ ||b||q

′

L∞(RN )
(|un(x)|q + |u(x)|q) dx

for some positive constants C1, C2. Since un → u as n→∞ in Lp(RN )∩Lq(RN )
and almost all in RN , it follows from (2.2) and the convergence principle that

|g(x, un)− g(x, u)|q
′
≤ h(x) for almost all x ∈ RN and for some h ∈ L1(RN ),
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and thus g(x, un) → g(x, u) as n → ∞ for almost all x ∈ RN . This together
with the Lebesgue convergence Theorem yields that

||Ψ′(un)−Ψ′(u)||X∗s (RN ) = sup
||ϕ||Xs(RN )≤1

|〈Ψ′(un)−Ψ′(u), ϕ〉|

= sup
||ϕ||Xs(RN )≤1

∫
RN
|g(x, un)− g(x, u)| |ϕ(x)| dx

≤
(∫

RN
|g(x, un)− g(x, u)|q

′
dx

) 1
q′

→ 0 as n→∞.

This completes the proof. �

The following assertion is to show that the energy functional Iλ satisfies the
mountain pass geometry.

Lemma 2.8. Let 0 < s < 1 < p < +∞ with ps < N . Assume that (V) and
(G1)–(G4) hold. Then the geometric conditions in the mountain pass theorem
are satisfied, i.e.,

(1) u = 0 is a strict local minimum for Iλ,
(2) Iλ is unbounded from below in Xs(RN ).

Proof. By the condition (G3), it is trivial that u = 0 is a strict local minimum
for Iλ. Next we prove the condition (2). By the condition (G4), for any positive
constant M, we can choose a constant δ > 0 such that

(2.3) G(x, t) ≥M|t|p

for |t| > δ and for almost all x ∈ RN . Take v ∈ Xs(RN ) \ {0}. Then the
relation (2.3) implies that

Iλ(tv) = Φs,p(tv)− λΨ(tv) ≤ tp
(

1

p
||v||p

Xs(RN )
− λM

∫
RN
|v(x)|p dx

)
for sufficiently large t > 1. If M is large enough, then we conclude that
Iλ(tv) → −∞ as t → ∞ and therefore the functional Iλ is unbounded from
below. This completes the proof. �

With the help of Lemmas 2.5 and 2.7, we show that the energy functional
Iλ satisfies the Cerami condition ((C)c-condition for brevity), i.e., for c ∈ R,
any sequence {un} ⊂ Xs(RN ) such that

Iλ(un)→ c and ||I ′λ(un)||X∗s (RN )(1 + ||un||Xs(RN ))→ 0 as n→∞

has a convergent subsequence. The basic idea of the proofs for the following
Lemmas 2.9 and 2.11 comes from the paper [28]. These play a decisive role in
showing the existence of a nontrivial weak solution for problem (Pλ).

Lemma 2.9. Let 0 < s < 1 < p < +∞ with ps < N . Assume that (V) and
(G1)–(G5) hold. For any λ > 0, the functional Iλ satisfies the (C)c-condition.
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Proof. For c ∈ R, let {un} be a (C)c-sequence in Xs(RN ), that is,

(2.4) Iλ(un)→ c and ||I ′λ(un)||X∗s (RN )(1 + ||un||Xs(RN ))→ 0 as n→∞,

which show that

(2.5) c = Iλ(un) + o(1) and 〈I ′λ(un), un〉 = o(1),

where o(1)→ 0 as n→∞. It follows from Lemmas 2.5 and 2.7 that Φ′s,p and

Ψ′ are mappings of type (S+). Since I ′λ is of type (S+) and Xs(RN ) is reflexive,
it suffices to verify that the sequence {un} is bounded in Xs(RN ). Suppose to
the contrary that the sequence {un} is unbounded in Xs(RN ). So then we may
suppose that

||un||Xs(RN ) > 1 and ||un||Xs(RN ) →∞ as n→∞.

Define a sequence {wn} by wn = un/||un||Xs(RN ). Then it is obvious that

{wn} ⊂ Xs(RN ) and ||wn||Xs(RN ) = 1. Hence, up to a subsequence, still denoted

by {wn}, we obtain wn ⇀ w in Xs(RN ) as n→∞ and by Lemma 2.3, we have

(2.6) wn → w a.e. in RN and wn → w in Lp0(RN ) as n→∞

for p ≤ p0 < p∗s. Set Ω =
{
x ∈ RN : w(x) 6= 0

}
. Due to the condition (2.5), we

have that

c = Iλ(un) + o(1) = Φs,p(un)− λΨ(un) + o(1)(2.7)

=
1

p
||un||pXs(RN )

− λ
∫
RN

G(x, un) dx+ o(1).

Since ||un||Xs(RN ) →∞ as n→∞, we assert that

(2.8)

∫
RN

G(x, un) dx =
1

λp
||un||pXs(RN )

− c

λ
+
o(1)

λ
→∞ as n→∞.

From the assumptions (G1) and (G2), we have that there exists a positive
constant M such that |G(x, t)| ≤M for all (x, t) ∈ RN×[−t0, t0]. This together
with (G4) yields that there is a real number M0 such that G(x, t) ≥M0 for all
(x, t) ∈ RN × R, and thus

(2.9)
G(x, un)−M0

||un||pXs(RN )

≥ 0

for all x ∈ RN and for all n ∈ N. By the convergence (2.6), we know that
|un| = |wn| ||un||Xs(RN ) → ∞ as n → ∞ for all x ∈ Ω. Furthermore, owing to
the condition (G4), we have

(2.10) lim
n→∞

G(x, un)

||un||pXs(RN )

= lim
n→∞

G(x, un)

|un|p
|wn|p =∞
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for all x ∈ Ω. Hence we get that meas(Ω) = 0. Indeed, if meas(Ω) 6= 0, then
according to (2.7)–(2.10), and the Fatou lemma, we deduce that

1

λ
= lim inf

n→∞

∫
RN G(x, un) dx

λ
∫
RN G(x, un) dx+ c− o(1)

= lim inf
n→∞

∫
RN

G(x, un)
1
p ||un||

p
Xs(RN )

dx

≥ lim inf
n→∞

∫
Ω

pG(x, un)

||un||pXs(RN )

dx− lim sup
n→∞

∫
Ω

pM0

||un||pXs(RN )

dx

= lim inf
n→∞

∫
Ω

p(G(x, un)−M0)

||un||pXs(RN )

dx(2.11)

≥
∫

Ω

lim inf
n→∞

p(G(x, un)−M0)

||un||pXs(RN )

dx

=

∫
Ω

lim inf
n→∞

pG(x, un)

|un|pXs(RN )

|wn|pXs(RN ) dx−
∫

Ω

lim sup
n→∞

pM0

||un||pXs(RN )

dx

=∞,

which is a contradiction. Thus w(x) = 0 for almost all x ∈ RN .
Observe that

c+ 1 ≥ Iλ(un)− 1

p
〈I ′λ(un), un〉

=
1

p
||un||pXs(RN )

− λ
∫
RN

G(x, un) dx− 1

p
||un||pXs(RN )

(2.12)

+
λ

p

∫
RN

g(x, un)un dx

≥ λ

∫
RN

G(x, un) dx

for n large enough and G is defined in (G5). Let us define Ωn(a, b) := {x ∈
RN : a ≤ |un(x)| < b} for a ≥ 0. By the convergence (2.6), we note that

(2.13) wn → 0 in Lp0(RN ) and wn → 0 a.e. in RN as n→∞
for p ≤ p0 < p∗s. Hence from the relation (2.8) we get

(2.14) 0 <
1

λp
≤ lim sup

n→∞

∫
RN

|G(x, un)|
||un||pXs(RN )

dx.

On the other hand, we can choose a positive constantKp0
such that ||wn||Lp0 (RN )

≤ Kp0 ||wn||Xs(RN ) for p ≤ p0 < p∗s, because ||wn||Xs(RN ) = 1. From the assump-
tion (G2) and (2.13), we have∫

Ωn(0,d)

G(x, un)

||un||pXs(RN )

dx ≤
∫

Ωn(0,d)

a(x) |un(x)|+ b(x)
q |un(x)|q

||un||pXs(RN )

dx
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≤ 1

||un||pXs(RN )

||a||Lq′ (RN )||un||Lq(RN )

+
||b||L∞(RN )

q

∫
Ωn(0,d)

|un(x)|q−p |wn(x)|p dx

≤
C3||a||Lq′ (RN )

||un||p−1
Xs(RN )

||wn||Lq(RN )

+
||b||L∞(RN )

q
dq−p

∫
RN
|wn(x)|p dx

≤ KqC4

||un||p−1
Xs(RN )

+
||b||L∞(RN )

q
dq−p

∫
RN
|wn(x)|p dx→ 0(2.15)

as n→∞,

where C3 and C4 are positive constants. Set τ ′ = τ/(τ − 1). Since τ > N/ps,
we see that p < τ ′p < p∗s. Hence, it follows from (G5), (2.12), and (2.13) that∫

Ωn(d,∞)

|G(x, un)|
||un||pXs(RN )

dx

=

∫
Ωn(d,∞)

|G(x, un)|
|un(x)|p

|wn(x)|p dx

≤

{∫
Ωn(d,∞)

(
|G(x, un)|
|un(x)|p

)τ
dx

} 1
τ
{∫

Ωn(d,∞)

|wn(x)|τ
′p

} 1
τ′

≤ c
1
τ
0

{∫
Ωn(d,∞)

G(x, un) dx

} 1
τ
{∫

RN
|wn(x)|τ

′p

} 1
τ′

≤ c
1
τ
0

(
c+ 1

λ

) 1
τ

{∫
RN
|wn(x)|τ

′p

} 1
τ′

→ 0 as n→∞.(2.16)

Combining (2.15) with (2.16), we have∫
RN

|G(x, un)|
||un||pXs(RN )

dx =

∫
Ωn(0,d)

|G(x, un)|
||un||pXs(RN )

dx+

∫
Ωn(d,∞)

|G(x, un)|
||un||pXs(RN )

dx→ 0

as n→∞, which contradicts (2.14). This completes the proof. �

Theorem 2.10. Let 0 < s < 1 < p < +∞ with ps < N . Assume that (V)
and (G1)–(G5) hold. Then the problem (Pλ) has a nontrivial weak solution for
all λ > 0.

Proof. Note that Iλ(0) = 0. By Lemmas 2.8 and 2.9, we verify that all con-
ditions of the mountain pass theorem are satisfied. Consequently, the problem
(Pλ) has a nontrivial weak solution for all λ > 0. �
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Lemma 2.11. Let 0 < s < 1 < p < +∞ with ps < N . Assume that (V),
(G1)–(G4), and (G6) hold. Then the functional Iλ satisfies the (C)c-condition
for any λ > 0.

Proof. Let {un} be a (C)c-sequence in Xs(RN ) satisfying (2.4). Then the
relation (2.5) is fulfilled. As in the proof of Lemma 2.9, we only show that {un}
is bounded in Xs(RN ). To this end, arguing by contradiction, suppose that
||un||Xs(RN ) → ∞ as n → ∞. Let vn = un/||un||Xs(RN ). Then ||vn||Xs(RN ) = 1
and for p ≤ p0 < p∗s, ||vn||Lp0 (RN ) ≤ Kp0 ||vn||Xs(RN ) = Kp0 , where Kp0 is the
Sobolev constant. Passing to a subsequence, we may assume that vn ⇀ v in
Xs(RN ) as n→∞, then by Lemma 2.3,

vn → v in Lp0(RN ) and vn(x)→ v(x) almost all x ∈ RN as n→∞.

By the assumption (G6), one has

c+ 1 ≥ Iλ(un)− 1

µ
〈I ′λ(un), un〉

=
1

p
||un||pXs(RN )

− λ
∫
RN

G(x, un) dx− 1

µ
||un||pXs(RN )

+
λ

µ

∫
RN

g(x, un)un dx

≥
(

1

p
− 1

µ

)
||un||pXs(RN )

− λ%

µ

∫
RN
|un(x)|p dx

which implies

(2.17) 1 ≤ λ%p

µ− p
lim sup
n→∞

||vn||pLp(RN )
=

λ%p

µ− p
||v||p

Lp(RN )
.

Hence, it follows from (2.17) that v 6= 0. If we follow the same argument as in
Lemma 2.9, we can check the relations (2.8), (2.9), and (2.10) and hence yield
the relation (2.11). Therefore we can conclude a contradiction. Thus, {un} is
bounded in Xs(RN ). �

Remark 2.12. Although we replace (G5) with (G6) in the assumption of Theo-
rem 2.10, we assert that the problem (Pλ) possesses a nontrivial weak solution
for all λ > 0 via Lemma 2.11.

2.2. Another approach for the existence of a nontrivial weak solution

In this subsection, we also give the existence of a nontrivial solution for our
problem without the assumptions (G5) and (G6) which play a decisive role in
obtaining the fact that the energy functional Iλ satisfies the (C)c-condition.
To show this result, for the time being, we need the following additional as-
sumptions for g:

(H) m(x) > 0 for all x ∈ RN and m ∈ L
γ
γ−q (RN ) with some γ satisfying

q < γ < p∗s.



FRACTIONAL p-LAPLACIAN EQUATION IN RN WITHOUT (AR)-CONDITION 1541

(G7) There exist nonnegative functions

a1 ∈ Lp
′
(RN ) ∩ Lr

′
(RN ), b1 ∈ L

p∗s
p∗s−r (RN ) ∩ L∞(RN )

with 1 < r < p∗s such that

|g(x, t)| ≤ a1(x) + b1(x) |t|r−1

holds for all (x, t) ∈ RN × R.

(G8) lim sups→0
|g(x,s)|

m(x)|s|ξ−1 < +∞ uniformly for almost all x ∈ RN with

q < ξ < p∗s.

(G9) lim sup|s|→∞

(
ess supx∈RN

|g(x,s)|
m(x)|s|q−1

)
< +∞, where p < q < p∗s.

We recall the functional Iλ : Xs(RN )→ R by

(2.18) Iλ(u) = Φs,p(u)− λΨ(u).

Here, Ψ can be defined as in Section 2.1 under the assumptions (G1) and (G7).
We observe that the growth of g allowed by both (G2) and (G7) is subcritical.

The assumptions (G1) and (G8) imply that g(x, 0) = 0 for almost all x ∈ RN .

Furthermore, lim sups→0
|G(x,s)|
m(x)|s|ξ < +∞ uniformly almost everywhere in RN ,

by L’Hôpital’s rule. From the analogous argument as in [16], define the crucial
value

(2.19) Cg = ess sup
s6=0,x∈RN

|g(x, s)|
m(x) |s|q−1 ,

where q < ξ. So then Cg is a positive constant. The assumptions (G8) and
(G9) yield Cg <∞, and furthermore the following relation

ess sup
s6=0,x∈RN

|G(x, s)|
m(x) |s|q

=
Cg
q

holds.
Under the circumstance for the functional Iλ in (2.18), we need the following

lemma. However, since the growth condition for g in (G7) is different from that
in (G2), we cannot follow the lines of the proof as in Lemma 2.7 to get the
following assertion directly. Hence we give the proof.

Lemma 2.13. Let 0 < s < 1 < p < +∞ with ps < N . Assume that (V), (G1),
and (G7) hold. Then Ψ and Ψ′ are weakly strongly continuous in Xs(RN ).

Proof. In the same way to that of Proposition 1.12 in [43], it is obvious that the
functional Ψ is Gâteaux differentiable in Xs(RN ). So, we only need to prove
that the functionals Ψ and Ψ′ are weakly strongly continuous in Xs(RN ). Let
us assume that un ⇀ u in Xs(RN ) as n→∞. First we prove that Ψ is weakly
strongly continuous on Xs(RN ). Observe that

|Ψ(un)−Ψ(u)| ≤
∫
RN
|G(x, un)−G(x, u)| dx
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≤
∫
RN\BNK (0)

|G(x, un)−G(x, u)| dx

+

∫
BNK (0)

|G(x, un)−G(x, u)| dx,(2.20)

where BNK (0) := {x ∈ RN : |x| ≤ K} for K ∈ N. For the first term in the right
side of the inequality (2.20), the assumption (G7) and the Hölder inequality
imply that∫

RN\BNK (0)

|G(x, un)−G(x, u)| dx

≤
∫
RN\BNK (0)

|G(x, un)|+ |G(x, u)| dx

≤
∫
RN\BNK (0)

a1(x)(|un(x)|+ |u(x)|) +
b1(x)

r
(|un(x)|r + |u(x)|r) dx

≤ C5||a1||Lp′ (RN\BNK (0))||un + u||Lp(RN\BNK (0))

+ C6||b1||
L

p∗s
p∗s−r (RN\BNK (0))

||un + u||r
Lp
∗
s (RN\BNK (0))

for some positive constants C5 and C6. Note that a1 ∈ Lp
′
(RN ) and b1 ∈

L
p∗s
p∗s−r (RN ). Then, for any ε > 0, there exists N(K) ∈ N such that K > N(K)

implies∫
RN\BNK (0)

|a1(x)|p
′
dx < ε and

∫
RN\BNK (0)

|b1(x)|
p∗s
p∗s−r dx < ε.

Since Xs(RN ) is reflexive, {un} is bounded in Xs(RN ) and {un + u} is also
bounded in Xs(RN ). By Lemma 2.2, {un} is bounded in Lp

∗
s (RN ) and so

{un + u} is bounded in Lp
∗
s (RN ). Consequently, we assert that

(2.21)

∫
RN\BNK (0)

|G(x, un)−G(x, u)| dx < 2C7ε

for some positive constant C7.
Next, we consider the second term in the right side of the inequality (2.20).

Since un ⇀ u in Xs(RN ) as n → ∞, it is easy to check that un ⇀ u in
Xs(B

N
K (0)) and un → u in Lr(BNK (0)) by Lemma 2.1. By the convergence

principle, there exist a subsequence, still denoted by {un}, in Xs(B
N
K (0)) and

a function v ∈ Lp(BNK (0)) ∩ L
p∗s
r (BNK (0)) such that un(x) → u(x) for almost

all x ∈ BNK (0) as n → ∞ and |un(x)| ≤ v(x) for all n ∈ N and for almost all
x ∈ BNK (0). Therefore from (G7), we get∫

BNK (0)

|G(x, un)| dx ≤
∫
BNK (0)

a1(x)|un(x)|+ b1(x)|un(x)|r dx
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≤
∫
BNK (0)

a1(x)|v(x)|+ b1(x)|v(x)|r dx

and thus {G(x, un)} is uniformly integrable on BNK (0). By the assumptions
(G1) and (G7), we deduce that G(x, un)→ G(x, u) as n→∞ and

|G(x, u)| ≤ ||a1||L∞(RN )|u(x)|+ ||b1||L∞(RN )|u(x)|r <∞

for almost all x ∈ BNK (0), respectively. By the Vitali convergence theorem,∫
BNK (0)

G(x, un) dx→
∫
BNK (0)

G(x, u) dx

as n→∞. Hence for above ε > 0, there exists N(K) ∈ N such that

(2.22)

∫
BNK (0)

|G(x, un)−G(x, u)| dx < ε

for K > N(K). From (2.21) and (2.22), we have∫
RN

G(x, un) dx→
∫
RN

G(x, u) dx

as n→∞. This implies that Ψ is weakly strongly continuous on Xs(RN ).
Next we prove that Ψ′ is weakly strongly continuous on Xs(RN ). Note that

sup
||ϕ||Xs(RN )≤1

∣∣〈Ψ′(un)−Ψ′(u), ϕ〉
∣∣

= sup
||ϕ||Xs(RN )≤1

∣∣∣∫
RN

(g(x, un)− g(x, u))ϕdx
∣∣∣

≤ sup
||ϕ||Xs(RN )≤1

∣∣∣∫
BNK (0)

(g(x, un)− g(x, u))ϕdx
∣∣∣(2.23)

+ sup
||ϕ||Xs(RN )≤1

∣∣∣∫
RN\BNK (0)

(g(x, un)− g(x, u))ϕdx
∣∣∣

for some constant K and for any ϕ ∈ Xs(RN ). Since 1 < p < p∗s, the compact
embedding

W s,p(BNK (0)) ↪→ Lp(BNK (0)) implies un → u in Lp(BNK (0)) as n→∞.

This together with the continuity of the Nemytskii operator with g and acting
from Lp(BNK (0)) into Lr

′
(BNK (0)) yields that it is easy to see that the first term

in the right side of the inequality (2.23) tends to 0 as n→∞. For the second
term in (2.23), we have∣∣∣∫

RN\BNK (0)

(g(x, un)− g(x, u))ϕdx
∣∣∣

≤
∫
RN\BNK (0)

(a1(x) + b1(x) |un(x)|r−1
) |ϕ| dx
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+

∫
RN\BNK (0)

(a1(x) + b1(x) |u(x)|r−1
) |ϕ| dx

≤ 2||a1||Lp′ (RN\BNK (0))||ϕ||Lp(RN )

+ ||b1||
L

p∗s
p∗s−r (RN\BNK (0))

(
||un||r−1

Lp
∗
s (RN )

+ ||u||r−1

Lp
∗
s (RN )

)
||ϕ||Lp∗s (RN ).

According to the assumption (G7), for above ε > 0, there exists N(K) ∈ N
such that

||a1||Lp′ (RN\BNK (0)) < ε and ||b1||
L

p∗s
p∗s−r (RN\BNK (0))

< ε

for K > N(K). As the sequence {un} is bounded in Xs(RN ), invoking Lemma
2.2, {un} is bounded in Lp(RN ) and also in Lp

∗
s (RN ). Thus, it is immediate

that

(2.24)

∣∣∣∣∫
RN\BNK (0)

(g(x, un)− g(x, u))ϕdx

∣∣∣∣ ≤ C8ε

for a positive constant C8. Due to (2.24), we can deduce that∫
RN

(g(x, un)− g(x, u))ϕdx→ 0 as n→∞.

This implies that Ψ′ is weakly strongly continuous in Xs(RN ). Therefore, the
proof is completed. �

As mentioned earlier, we give an abstract critical point theory based on
[9] to get our main result of this subsection. To do this, we briefly introduce
the following definitions and some properties for locally Lipschitz continuous
functionals.

Let X be a real Banach space. A functional I : X → R is called locally
Lipschitz continuous when, for every u ∈ X, there exist a neighborhood U of
u and a constant L ≥ 0 such that

|I(v)− I(w)| ≤ L||v − w||X for all v, w ∈ U.

Let u, v ∈ X. The symbol I◦(u; v) indicates the generalized directional deriva-
tive of I at point u along direction v, namely

I◦(u; v) := lim sup
w→u,t→0+

I(w + tv)− I(w)

t
.

The generalized gradient of the function I at u, denoted by ∂I(u), is the set

∂I(u) :=
{
u∗ ∈ X : 〈u∗, v〉 ≤ I◦(u; v) for all v ∈ X

}
.

Definition 2.14. A functional I : X → R is called Gâteaux differentiable at
u ∈ X if there is ψ ∈ X∗(denoted by I ′(u)) such that

lim
t→0+

I(u+ tv)− I(u)

t
= I ′(u)(v)
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for all v ∈ X. It is called continuously Gâteaux differentiable if it is Gâteaux
differentiable for any u ∈ X and the function u → I ′(u) is a continuous map
from X to its dual X∗.

We recall that if I is continuously Gâteaux differentiable, then it is locally
Lipschitz continuous and one has I◦(u; v) = I ′(u)(v) for all u, v ∈ X.

For a real Banach space (X, || · ||X), we say that a functional I(u) = Φ(u)−
Ψ(u) satisfies the (C)[µ]-condition cut off upper at µ if any Cerami sequence
{xn} ⊂ X for I with 0 < Φ(xn) < µ has a convergent subsequence of {xn}.

We recall the key lemma in [49] (see also [25]) to prove the abstract critical
points result under the (C)[µ]-condition (Theorem 2.16).

Lemma 2.15. Let X be a real Banach space and let I : X → R be a locally
Lipschitz continuous function with bounded from below. Then, for all mini-
mizing sequence of I, {un}n∈N ⊆ X, there exists a minimizing sequence of I,
{vn}n∈N ⊆ X, such that for any n ∈ N,

I(vn) ≤ I(un) and I◦(vn;h) ≥ −εn||h||X
1 + ||vn||X

for all h ∈ X, and n ∈ N, where εn → 0+.

Let us introduce two functions

ϕ1(µ) = inf
v∈Φ−1((0,µ))

supu∈Φ−1((0,µ)) Ψ(u)−Ψ(v)

µ− Φ(v)

and

ϕ2(µ) = sup
v∈Φ−1((0,µ))

Ψ(v)− supu∈Φ−1((−∞,0]) Ψ(u)

Φ(v)

for all µ ∈ R.
Using Lemma 2.15, we obtain the following result; see [12] for the case of the

Palais-Smale condition. The proof of this theorem proceeds in the analogous
way to those of Theorems 2.3 and 2.4 in [12]. For the sake of convenience, we
give the proof.

Theorem 2.16. Let X be a real Banach space and let Φ,Ψ : X → R be two
locally Lipschitz continuous functionals. Suppose that

there exists µ ∈ R such that ϕ1(µ) < ϕ2(µ).

Moreover, assume that for each λ ∈ Λ :=
(

1
ϕ2(µ) ,

1
ϕ1(µ)

)
the functional Iλ :=

Φ− λΨ satisfies (C)[µ]-condition. Then, for each λ ∈ Λ, the functional Iλ has
a nontrivial point u0,λ in Φ−1((0, µ)) such that Iλ(u0,λ) ≤ Iλ(u) for all u in
Φ−1((0, µ)) with u0,λ being a critical point of Iλ.
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Proof. For each λ ∈
(

1
ϕ2(µ) ,

1
ϕ1(µ)

)
, we have ϕ1(µ) < 1/λ < ϕ2(µ) which

implies the existence of v1, v2 ∈ Φ−1((0, µ)) such that

(2.25)

1

λ
>

supu∈Φ−1((0,µ)) Ψ(u)−Ψ(v1)

µ− Φ(v1)
and

1

λ
<

Ψ(v2)− supu∈Φ−1((−∞,0]) Ψ(u)

Φ(v2)
.

Now, let x0 ∈ Φ−1((0, µ)) be such that

Φ(x0)− λΨ(x0) = min{Φ(v1)− λΨ(v1),Φ(v2)− λΨ(v2)}.

From (2.25), we have

(2.26) sup
u∈Φ−1((0,µ))

λΨ(u) ≤ µ− Φ(x0) + λΨ(x0),

and

(2.27) sup
u∈Φ−1((−∞,0])

λΨ(u) ≤ −Φ(x0) + λΨ(x0).

Set

(2.28) K = µ− Φ(x0) + λΨ(x0).

Define

(2.29) Φ0(u) = max{Φ(u), 0}, λΨK(u) = min{λΨ(u),K},

and

Jλ = Φ0 − λΨK.

Clearly, Jλ is locally Lipschitz continuous and bounded from below. Given
a sequence {un} in X such that limn→∞ Jλ(un) = infX Jλ, it follows from
Lemma 2.15 that we choose a sequence {vn} in X such that

(2.30) lim
n→∞

Jλ(vn) = inf
X
Jλ and J◦λ(vn;h) ≥ − εn||h||X

1 + ||vn||X
for all h ∈ X and for all n ∈ N, where εn → 0+.

Assume that Jλ(x0) = infX Jλ. Due to the relation (2.26) and the definition
of K, we get

λΨ(u) ≤ K for all u ∈ Φ−1((0, µ)).

This together with the relation (2.29) yields that Jλ(u) = Iλ(u) and

Iλ(x0) = Jλ(x0) ≤ Jλ(u) = Iλ(u) for all u ∈ Φ−1((0, µ)).

On the other hands, if infX Jλ < Jλ(x0), then there exists a positive integer
n0 such that Jλ(vn) < Jλ(x0) for all n > n0. From (2.29) and the choice of x0,
we get

Φ(vn)− λΨK(vn) < Φ0(vn)− λΨK(vn) = Jλ(vn) < Jλ(x0) = Φ(x0)− λΨ(x0)
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for all n > n0. Thus, we have

Φ(vn) < λΨK(vn) + Φ(x0)− λΨ(x0) ≤ K + Φ(x0)− λΨ(x0) = µ.

This implies Φ(vn) < µ for all n > n0. Next, we prove that Φ(vn) > 0 for all
n > n0. Suppose to the contrary that Φ(vn) ≤ 0 for all n > n0. This yields

−λΨ(vn) = Φ0(vn)− λΨ(vn) ≤ Φ(x0)− λΨ(x0)

or equivalently

−Φ(x0) + λΨ(x0) < λΨ(vn).

Due to (2.27), we have Φ(vn) > 0, which is a contradiction. Consequently, we
obtain

(2.31) 0 < Φ(vn) < µ for all n > n0.

Then, from (2.26) and (2.31) we obtain

Jλ(vn) = Iλ(vn) and J◦λ(vn;h) = I◦λ(vn;h)

for all n > n0 and for all h ∈ X. Therefore it follows from (2.30) that

lim
n→∞

Iλ(vn) = lim
n→∞

Jλ(vn) = inf
X
Jλ

and

I◦λ(vn;h) ≥ − εn||h||X
1 + ||vn||X

for all h ∈ X. Since Iλ satisfies (C)[µ]-condition, the sequence {vn} admits a
subsequence strongly converging to v∗ in X as n→∞. Thus,

Iλ(v∗) = inf
X
Jλ ≤ Jλ(u) = Iλ(u)

for all u ∈ Φ−1((0, µ)). To put it shortly, we obtain

(2.32) Iλ(v∗) ≤ Iλ(u) for all u ∈ Φ−1((0, µ)).

From (2.31) and the continuity of Φ, we have v∗ ∈ Φ−1([0, µ]). To complete
our proof, we consider the following three cases:

Case 1: If v∗ ∈ Φ−1((0, µ)), by (2.32) the conclusion holds.
Case 2: If Φ(v∗) = 0, then (2.27) implies

Iλ(v∗) = −λΨ(v∗) ≥ Φ(x0)− λΨ(x0) = Iλ(x0).

This combined with (2.32) gives Iλ(x0) ≤ Iλ(u) for all u ∈ Φ−1((0, µ)),
as claimed.

Case 3: If Φ(v∗) = µ, we have λΨ(v∗) = λΨK(v∗) ≤ K since Iλ(v∗) = Jλ(v∗).
Next, we prove that Iλ(v∗) = Iλ(x0). In fact, if we suppose that
Iλ(v∗) < Iλ(x0), then by (2.28), we have

Iλ(v∗) = µ− λΨ(v∗) ≥ µ−K = Φ(x0)− λΨ(x0) = Iλ(x0),

that is, Iλ(v∗) ≥ Iλ(x0) which contradicts with the assumption. Hence,
from (2.32) we have Iλ(x0) ≤ Iλ(u) for all u ∈ Φ−1((0, µ)).
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This completes the proof taking into account that each local minimum is also
a critical point of Iλ. �

The following corollary is an immediate consequence of Theorem 2.16. This
is applied to obtain our main result of this subsection.

Corollary 2.17. Let Φ : X → R be a continuously Gâteaux differentiable and
Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact such that

inf
u∈X

Φ(u) = Φ(0) = Ψ(0) = 0.

Assume that there exist a positive constant µ and an element ũ ∈ X, with
0 < Φ(ũ) < µ, such that

(2.33)
supΦ(u)≤µ Ψ(u)

µ
<

Ψ(ũ)

Φ(ũ)

holds and for each λ ∈ Λµ :=
(

Φ(ũ)
Ψ(ũ) ,

µ
supΦ(u)≤µ Ψ(u)

)
, the functional Iλ :=

Φ − λΨ satisfies the (C)[µ]-condition. Then, for each λ ∈ Λµ, the functional
Iλ has a nontrivial point xλ in Φ−1((0, µ)) such that Iλ(xλ) ≤ Iλ(x) for all x
in Φ−1((0, µ)) and I ′λ(xλ) = 0.

Proof. From the same argument as Theorem 2.5 in [12], it is easy to check that(
Φ(ũ)

Ψ(ũ)
,

µ

supΦ(u)≤µ Ψ(u)

)
⊆
(

1

ϕ2(µ)
,

1

ϕ1(µ)

)
.

Theorem 2.16 implies that the conclusion holds. �

To localize the precise interval of λ for which the problem (Pλ) has at least
one weak solution, we consider the following eigenvalue problem

(E) (−∆)spu+ V (x) |u|p−2
u = λm(x) |u|q−2

u in RN .

Definition 2.18. Let 0 < s < 1 < p < +∞. We say that λ ∈ R is an
eigenvalue of the eigenvalue problem (E) if∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

+

∫
RN

V (x) |u|p−2
uv dx = λ

∫
RN

m(x) |u|q−2
uv dx

holds for any v ∈ Xs(RN ) and p < q < p∗s. Then u is called an eigenfunction
associated with the eigenvalue λ.

Now we obtain the existence of the positive principal eigenvalue for the
problem (E). The basic idea of the proof of the following consequence follows
the lines of that of Lemma 3.1 in [18].
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Proposition 2.19. Let 0 < s < 1 < p < +∞ with ps < N . Assume that
(V) and (H) hold. Then the eigenvalue problem (E) has a pair (λ1, u1) of a
principal eigenvalue λ1 and an eigenfunction u1 with λ1 > 0 and 0 ≤ u1 ∈
Xs(RN )(u1 6≡ 0).

Proof. Let us denote the quantity

λ1 = inf
{
|v|p

W s,p(RN )
+

∫
RN

V |v|p dx :

∫
RN

m(x)|v|qdx = 1
}
.

We shall prove that λ1 is the least eigenvalue of (E). Obviously λ1 ≥ 0. Let
{vn}∞n=1 be the minimizing sequence for λ1, i.e.,

(2.34)

∫
RN

m(x)|vn|q dx = 1 and |vn|pW s,p(RN )
+ ||V

1
p vn||pLp(RN )

= λ1 + δn

with δn → 0+ for n → ∞. It follows from (2.34) that ||vn||Xs(RN ) ≤ C9 for

some constant C9 > 0. The reflexivity of Xs(RN ) yields the weak convergence
vn ⇀ u1 in Xs(RN ) as n → ∞ for some u1 (at least for some subsequence
of {vn}). The compact embedding Xs(RN ) ↪→ Lγ(RN ) implies the strong
convergence vn → u1 in Lγ(RN ) as n → ∞. It follows from (H), (2.34), the
Minkowski and Hölder inequalities that

1 = lim
n→∞

(∫
RN

m(x) |vn(x)|q dx
) 1
q

≤ lim
n→∞

(∫
RN

m(x) |vn(x)− u1(x)|q dx
) 1
q

+

(∫
RN

m(x) |u1(x)|q dx
) 1
q

≤ lim
n→∞

(∫
RN

m(x)
γ
γ−q dx

) γ−q
qγ
(∫

RN
|vn(x)− u1(x)|γ dx

) 1
γ

(2.35)

+

(∫
RN

m(x) |u1(x)|q dx
) 1
q

=

(∫
RN

m(x) |u1(x)|q dx
) 1
q

.

On the other hand, we note that(∫
RN

m(x) |u1(x)|q dx
) 1
q

(2.36)

≤ lim
n→∞

(∫
RN

m(x)
γ
γ−q dx

) γ−q
qγ
(∫

RN
|u1(x)− vn(x)|γ dx

) 1
γ

+ lim
n→∞

(∫
RN

m(x) |vn(x)|q dx
) 1
q

= 1.
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From the inequalities (2.35) and (2.36), we have∫
RN

m(x) |u1(x)|q dx = 1.

In particular, u1 6= 0. The weak lower semicontinuity of the norm in Xs(RN )
yields

λ1 ≤ |u1|pW s,p(RN )
+ ||V

1
pu1||pLp(RN )

= ||u1||Xs(RN ) ≤ lim inf
n→∞

||vn||Xs(RN )

= lim inf
n→∞

{
|vn|pW s,p(RN )

+ ||V
1
p vn||pLp(RN )

}
= lim inf

n→∞
(λ1 + δn) = λ1,

i.e.,

(2.37) λ1 = |u1|pW s,p(RN )
+ ||V

1
pu1||pLp(RN )

.

It follows from (2.37) that λ1 > 0 and it is easy to check that λ1 is the least
eigenvalue of (E) with the corresponding eigenfunction u1. Moreover, if u is an
eigenfunction associated with λ1, then |u| is also an eigenfunction associated
with λ1. Hence we can suppose that u1 ≥ 0 almost everywhere in RN . �

Theorem 2.20. Let 0 < s < 1 < p < +∞ with ps < N . Assume that
(V), (H), (G1), and (G7)-(G9) hold. If furthermore g satisfies the following
assumption:

(G10) There exist a real number s0, a positive constant r0, and an element
x0 in RN with

2 |s0|p ω2
Nr

N−sp
0 M < p

such that∫
BNr0

(x0)

G(x, |s0|) dx > 0 and G(x, t) ≥ 0

for almost all x ∈ BNr0(x0) \ BNr0/2(x0) and for all 0 ≤ t ≤ |s0|. Here

BNr0(x0) =
{
x ∈ RN : |x− x0| ≤ r0

}
and

Cg
qλ1

<
rsp0 ess infBN

r0/2
(x0)G(x, |s0|)

2N+1 |s0|p ωNM
,

where ωN is the volume of BN1 (0), Cg is given in (2.19) and

M :=
22p+N−sp−1

(p− sp)(N − sp+ p)
+

1

2N−sp−1sp(N + p− sp)

+
1

sp(N − sp)
+
rsp0 supx∈BNr0 (x0) V (x)

2NωN
.

Then, for every

λ ∈ Λ̃ :=

(
2N+1 |s0|p ωNM

p rsp0 ess infx∈BN
r0/2

(x0)G(x, |s0|)
,
qλ1

pCg

)
,
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the problem (Pλ) has at least one nontrivial weak solution.

Proof. The functionals Φs,p,Ψ : Xs(RN )→ R are defined as

Φs,p(u) =
1

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

1

p

∫
RN

V (x) |u(x)|p dx,

and

Ψ(u) =

∫
RN

G(x, u) dx.

First of all, we show that Iλ satisfies the (C)[µ]-condition. Let µ be a fixed
positive number and let {un} be a Cerami sequence in Xs(RN ) with Φs,p(un) <
µ. It follows from Lemma 2.3, we have

µ > Φs,p(un) =
1

p

∫
RN

∫
RN

|un(x)− un(y)|p

|x− y|N+sp
dxdy +

1

p

∫
RN

V (x) |un(x)|p dx

=
1

p
||un||pXs(RN )

.

Thus, the sequence {un} is bounded and we may suppose that un ⇀ u0 as
n→∞ for some u0 ∈ Xs(RN ). By Lemma 2.7, we know that Ψ′(un)→ Ψ′(u0)
as n→∞, which implies that

(2.38) lim sup
n→∞

〈λΨ′(un), un − u0〉 = 0.

From the definition of (C)[µ]-condition and the boundedness of {un}, it follows
that 〈I ′λ(un), v〉 → 0 as n → ∞ for any v in Xs(RN ). Combining this with
(2.38), we have

lim sup
n→+∞

〈Φ′s,p(un), un − u0〉 ≤ lim sup
n→+∞

〈λΨ′(un), un − u0〉 = 0.

Since Φs,p is of type (S+), we conclude that un → u0 as n→∞ in Xs(RN ).
Next, to apply Lemma 2.17 with Φ = Φs,p, we will show that there exist

a positive constant µ and an element ũ ∈ X satisfying Φs,p(ũ) < µ and the
relation (2.33). Define

(2.39) ũ(x) =


0 if x ∈ RN \BNr0(x0),

|s0| if x ∈ BNr0/2(x0),
2|s0|
r0

(r0 − |x− x0|) if x ∈ BNr0(x0) \BNr0/2(x0).

Then it is clear that 0 ≤ ũ(x) ≤ |s0| for all x ∈ RN , and so ũ ∈ Xs(RN ). It
follows from (G10) that

Φs,p(ũ) =
1

p

∫
RN

∫
RN

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy +

1

p

∫
RN

V (x) |ũ(x)|p dx

=
1

p

∫
BNr0

(x0)\BN
r0/2

(x0)

∫
BNr0

(x0)\BN
r0/2

(x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy



1552 J.-M. KIM, Y.-H. KIM, AND J. LEE

+
2

p

∫
BNr0 (x0)\BN

r0/2
(x0)

∫
RN\BNr0 (x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy

+
2

p

∫
BN
r0/2

(x0)

∫
BNr0

(x0)\BN
r0/2

(x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy

+
2

p

∫
RN\BNr0 (x0)

∫
BN
r0/2

(x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy

+
1

p

∫
RN

V (x) |ũ(x)|p dx

=:
1

p
(I1 + 2I2 + 2I3 + 2I4 + I5).

Next we estimate I1–I5, by the direct calculation, respectively:
• Estimate of I1: For any positive constant ε small enough,

I1 =

∫
BNr0

(x0)\BN
r0/2

(x0)

∫
BNr0

(x0)\BN
r0/2

(x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy

≤ 2p |s0|p

rp0

∫
BNr0

(x0)\BN
r0/2

(x0)

∫
BNr0

(x0)\BN
r0/2

(x0)

|x− y|p

|x− y|N+sp
dxdy

≤ 2p |s0|p ωN
rp0

∫
BNr0

(x0)\BN
r0/2

(x0)

∫ r0+|y−x0|

ε

rp−sp−1 drdy

≤ 2p |s0|p ωN
rp0

∫
BNr0

(x0)\BN
r0/2

(x0)

(r0 + |y − x0|)p−sp

p− sp
dy

=
2p |s0|p ω2

N

(p− sp)rp0

∫ 2r0

3
2 r0

tp+N−sp−1 dt

=
2p |s0|p ω2

Nr
N−sp
0

(p− sp)(p+N − sp)

(
2p+N−sp −

(
3

2

)p+N−sp)
.

• Estimate of I2:

I2 =

∫
BNr0

(x0)\BN
r0/2

(x0)

∫
RN\BNr0 (x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy

≤ 2p |s0|p

rp0

∫
BNr0

(x0)\BN
r0/2

(x0)

∫
RN\BNr0 (x0)

|r0 − |y − x0||p

|x− y|N+sp
dxdy

=
2p |s0|p ωN

rp0

∫
BNr0

(x0)\BN
r0/2

(x0)

∫ ∞
r0−|y−x0|

|r0 − |y − x0||p

rsp+1
drdy

=
2p |s0|p ωN

rp0sp

∫
BNr0

(x0)\BN
r0/2

(x0)

|r0 − |y − x0| |p−sp dy
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=
2p |s0|p ω2

N

rp0sp

∫ r0
2

0

tN+p−sp−1 dt

=
|s0|p rN−sp0 ω2

N

2N−spsp(N + p− sp)
.

• Estimate of I3:

I3 =

∫
BN
r0/2

(x0)

∫
BNr0

(x0)\BN
r0/2

(x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy

=
2p |s0|p

rp0

∫
BN
r0/2

(x0)

∫
BNr0

(x0)\BN
r0/2

(x0)

∣∣− r02 + |x− x0|
∣∣p

|x− y|N+sp
dxdy

=
2p |s0|p

rp0

∫
BNr0

(x0)\BN
r0/2

(x0)

∫
BN
r0/2

(x0)

∣∣− r02 + |x− x0|
∣∣p

|x− y|N+sp
dydx

=
2p |s0|p ωN

rp0

∫
BNr0

(x0)\BN
r0/2

(x0)

∣∣∣−r0

2
+ |x− x0|

∣∣∣p ∫ |x−x0|+ r0
2

|x−x0|− r02

1

rsp+1
drdx

≤ 2p |s0|p ωN
rp0sp

∫
BNr0

(x0)\BN
r0/2

(x0)

∣∣∣−r0

2
+ |x− x0|

∣∣∣p−sp dx
=

2p |s0|p ω2
N

rp0sp

∫ r0
2

0

tN+p−sp−1 dt

=
rN−sp0 |s0|p ω2

N

2N−spsp(N + p− sp)
.

• Estimate of I4:

I4 =

∫
BN
r0/2

(x0)

∫
RN\BNr0 (x0)

|ũ(x)− ũ(y)|p

|x− y|N+sp
dxdy

= |s0|p
∫
BN
r0/2

(x0)

∫
RN\BNr0 (x0)

1

|x− y|N+sp
dxdy

= |s0|p ωN
∫
BN
r0/2

(x0)

∫ ∞
r0−|y−x0|

r−sp−1 drdy

= |s0|p ωN
∫
BN
r0/2

(x0)

1

sp(r0 − |y − x0|)sp
dy

=
|s0|p ω2

N

sp

∫ r0

r0
2

tN−sp−1 dt

=
|s0|p ω2

Nr
N−sp
0

(N − sp)sp

(
1− 1

2N−sp

)
.
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• Estimate of I5:

I5 =

∫
RN

V (x) |ũ|p dx ≤ sup
x∈BNr0 (x0)

V (x)

∫
BNr0

(x0)

|ũ|p dx

= sup
x∈BNr0 (x0)

V (x)

∫
BNr0

2

(x0)

|s0|p dx

+ sup
x∈BNr0 (x0)

V (x)

∫
BNr0

(x0)\BNr0
2

(x0)

2p |s0|p

rp0
(r0 − |x− x0|)p dx

≤
supx∈BNr0 (x0) V (x) |s0|p ωNrN0

N
.

Hence

Φs,p(ũ) ≤ 2 |s0|p ω2
Nr

N−sp
0 M

p
< 1,

whereM= 22p+N−sp−1

(p−sp)(N−sp+p) + 1
2N−sp−1sp(N+p−sp) + 1

sp(N−sp) +
rsp0 supx∈BNr0

(x0) V (x)

2NωN
.

Owing to the assumption (G10), we deduce that

Ψ(ũ) ≥
∫
BN
r0/2

(x0)

G(x, ũ) dx

≥ ess inf
x∈BN

r0/2
(x0)

G(x, |s0|)
(
ωNr

N
0

2N

)
and thus

(2.40)
Ψ(ũ)

Φs,p(ũ)
≥
p rsp0 ess infx∈BN

r0/2
(x0)G(x, |s0|)

2N+1 |s0|p ωNM
.

Also Lemma 2.3, Proposition 2.19 and the definition of Cg imply that

Ψ(u) =

∫
RN

G(x, u) dx

≤
∫
RN

|G(x, u)|
m(x) |u(x)|q

m(x) |u(x)|q dx

≤ Cg
q

∫
RN

m(x) |u(x)|q dx

≤ Cg
qλ1

(
|u|p

W s,p(RN )
+ ||V

1
pu||p

Lp(RN )

)
,

and hence

sup
u∈Φ−1

s,p((−∞,1])

Ψ(u) ≤ p Cg
qλ1

.
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Due to the inequality (2.40) and the assumption (G10), we have

sup
u∈Φ−1

s,p((−∞,1])

Ψ(u) <
Ψ(ũ)

Φs,p(ũ)
.

Therefore, we deduce Λ̃ ⊆ (
Φs,p(ũ)

Ψ(ũ) , 1
supΦs,p(u)≤1 Ψ(u) ). By applying Corollary

2.17 with µ = 1 and Φ = Φs,p, we conclude that the problem (Pλ) has at least

one nontrivial weak solution for each λ ∈ Λ̃. �

On the other hand, without using the principal eigenvalue λ1 and the cru-
cial number Cg, we can also prove that the problem (Pλ) admits at least one
nontrivial weak solution whenever the parameter λ belongs to an appreciate
positive interval. To obtain this result, we only need the minimum prerequisite
for the nonlinear term g. The proof for this consequence is similar to that of
Theorem 2.20.

Theorem 2.21. Let 0 < s < 1 < p < +∞ with ps < N . Assume that (V)
and (G1) hold. If furthermore g satisfies the following assumptions:

(G11) There exist nonnegative functions

a2 ∈ L(p∗s)′(RN ) ∩ Lr
′
(RN ), b2 ∈ L

p∗s
p∗s−r (RN ) ∩ L∞(RN )

with 1 < r < p∗s such that

|g(x, t)| ≤ a2(x) + b2(x) |t|r−1

holds for all (x, t) ∈ RN × R.
(G12) There exist a real number s0, a positive constant r0, and an element

x0 in RN with
2 |s0|p ω2

Nr
N−sp
0 M < p

such that∫
BNr0

(x0)

G(x, |s0|) dx > 0 and G(x, t) ≥ 0

for almost all x ∈ BNr0(x0) \BNr0/2(x0) and for all 0 ≤ t ≤ |s0|. Here

S
−1
p
s,p ||a2||L(p∗s )′ (RN )

+ S
−r
p
s,p ||b2||

L

p∗s
p∗s−r (RN )

<
rsp0 ess infBN

r0/2
(x0)G(x, |s0|)

2N+1 |s0|p ωNM
,

where Ss,p and M are given in Lemma 2.2 and Theorem 2.20, respec-
tively.

Then, for every

λ ∈ Λ̃ :=

 2N+1|s0|pωNM
p rsp1 ess inf

x∈BN
r0/2

(x0)
G(x,|s0|) ,

1

pS
−1
p
s,p ||a2||

L
(p∗s )′

(RN )
+pS

−r
p
s,p ||b2||

L

p∗s
p∗s−r (RN )

,
the problem (Pλ) has at least one nontrivial weak solution.
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Proof. The functionals Φs,p,Ψ : Xs(RN )→ R are defined as in Theorem 2.20.
With the same arguments as Lemma 2.13, it easily follows that Ψ and Ψ′ are
weakly strongly continuous in Xs(RN ). Repeating the same procedures as in
the proof of Theorem 2.20, we know that

Φs,p(ũ) ≤ 2 |s0|p ω2
Nr

N−sp
0 M

p
< 1

and

(2.41)
Ψ(ũ)

Φs,p(ũ)
≥
p rsp0 ess infx∈BN

r0/2
(x0)G(x, |s0|)

2N+1 |s0|p ωNM
,

where ũ is defined as (2.39).
Owing to the assumption (G11), Lemma 2.2, and the Hölder inequality, we

deduce that

Ψ(u) =

∫
RN

G(x, u) dx

≤
∫
RN

a2(x) |u|+ b2(x) |u|r dx

≤ ||a1||L(p∗s )′ (RN )
||u||Lp∗s (RN ) + ||b1||

L

p∗s
p∗s−r (RN )

||u||r
Lp
∗
s (RN )

≤ S
−1
p
s,p ||a1||L(p∗s )′ (RN )

||u||Xs(RN ) + S
−r
p
s,p ||b1||

L

p∗s
p∗s−r (RN )

||u||rXs(RN )

and hence

sup
u∈Φ−1

s,p((−∞,1])

Ψ(u) ≤ pS
−1
p
s,p ||a1||L(p∗s )′ (RN )

+ pS
−r
p
s,p ||b1||

L

p∗s
p∗s−r (RN )

.

Due to the inequality (2.41), we have

sup
u∈Φ−1

s,p((−∞,1])

Ψ(u) <
Ψ(ũ)

Φs,p(ũ)
.

Therefore, we deduce Λ̃ ⊆ (
Φs,p(ũ)

Ψ(ũ) , 1
supΦs,p(u)≤1 Ψ(u) ). As proved in Theorem

2.20, Iλ satisfies the (C)[µ]-condition. So, by applying Lemma 2.17 with µ = 1
and Φ = Φs,p, we conclude that the problem (Pλ) has at least one nontrivial

weak solution for each λ ∈ Λ̃. �

3. Conclusion

In summary, when the nonlinearity of g is subcritical and p-superlinear,
we demonstrate the existence and multiplicity of weak solutions to a class of
Schrödinger type equations involving the fractional p-Laplacian without the
Ambrosetti and Rabinowitz condition via variational method. Furthermore,
by considering a critical point theorem for an energy functional satisfying the
Cerami condition as a variant of Theorems 2.3 and 2.4 in [9], we give an accurate
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positive interval of the parameters λ for which our problem admits at least
one nontrivial weak solution in the case that the nonlinear term g has the
subcritical growth condition (but may not always be p-superlinear). Especially,
more complicated analysis than the papers [9–11] has to be carefully carried
out when we determine this interval.
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