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NUMBER OF WEAK GALOIS-WEIERSTRASS POINTS

WITH WEIERSTRASS SEMIGROUPS GENERATED

BY TWO ELEMENTS

Jiryo Komeda and Takeshi Takahashi

Abstract. Let C be a nonsingular projective curve of genus ≥ 2 over
an algebraically closed field of characteristic 0. For a point P in C, the

Weierstrass semigroup H(P ) is defined as the set of non-negative integers

n for which there exists a rational function f on C such that the order of
the pole of f at P is equal to n, and f is regular away from P . A point P

in C is referred to as a weak Galois-Weierstrass point if P is a Weierstrass
point and there exists a Galois morphism ϕ : C → P1 such that P is a

total ramification point of ϕ. In this paper, we investigate the number of

weak Galois-Weierstrass points of which the Weierstrass semigroups are
generated by two positive integers.

1. Introduction and theorem

In our previous paper [7], we investigated a number of relations between
weak Galois-Weierstrass points and Galois points. In this paper, to perform a
similar study of Galois point theory, we present an investigation of the number
of weak Galois-Weierstrass points, of which, the Weierstrass semigroups are
generated by two positive integers. First, let us recall the motives and several
definitions in brief.

In this paper, a curve refers to a complete nonsingular algebraic curve over
an algebraically closed field k of characteristic 0. A plane curve refers to a
(complete nonsingular) curve in P2.

Yoshihara introduced the notion of a Galois point for a plane curve as follows.

Definition 1.1 ([9, 11]). Let C be a plane curve of degree d ≥ 3. For a point
P ∈ P2, the projection πP : C → P1 from P induces an extension of function
fields π∗P : k(P1) ↪→ k(C). P is referred to as a Galois point for C if the
extension is Galois. Moreover, when P ∈ C or when P 6∈ C, the point is said
to be an inner or outer Galois point, respectively.
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One of the most representative results pertaining to Galois points is as fol-
lows.

Theorem 1.1 ([5, 9, 11]). Let C be a plane curve of degree d. Let (X : Y : Z)
be a system of homogeneous coordinates of P2.

(1) If d ≥ 5, then the number of inner Galois points for C equals 0 or 1.
(2) If d = 4, then the number of inner Galois points for C equals 0, 1 or

4. Moreover, the number of inner Galois points equals 4 if and only if
C is projectively equivalent to the curve XZ3 +X4 + Y 4 = 0.

(3) If d ≥ 3, then the number of outer Galois points for C equals 0, 1 or
3. Moreover, the number of outer Galois points equals 3 if and only if
C is projectively equivalent to the curve Xd + Y d + Zd = 0.

(4) Assume that d ≥ 4. There exist both an inner Galois point and an
outer Galois point for C if and only if C is projectively equivalent to
the curve XZd−1 +Xd + Y d = 0.

Remark 1.1. Several researchers have studied various other problems relating
to Galois points (see [6]).

The Galois points for a plane curve are characterized as weak
Galois-Weierstrass points, which are described as follows. Let Z≥0 be the set
of all non-negative integers.

Definition 1.2 ([10]). Let C be a curve of genus g ≥ 2. A point P ∈ C is
termed a Galois-Weierstrass point (GW point), if Φ|aP | : C → P1 is a Galois
covering, where a is the smallest positive integer of the Weierstrass semigroup

H(P ) := {n ∈ Z≥0 | ∃f ∈ k(C) such that (f)∞ = nP}.

Remark 1.2. A GW point may be a non-Weierstrass point. However, in this
study, we are only interested in GW points that are Weierstrass points.

Definition 1.3. Let C be a curve of genus g ≥ 2. We refer to P ∈ C as a
weak GW point if

(1) P is a total ramification point of some Galois covering f : C → P1, and
(2) P is a Weierstrass point of C.

Moreover, if P is a weak GW point and not a GW point, we refer to P as a
pseudo-GW point. For a weak GW point P , we denote

degGW(P ) := {deg f | Galois covering f : C → P1 which is totally ramified

at P}
and we refer to it as the set of degrees of the weak GW point.

Remark 1.3. (1) If P is a weak GW point and a ∈ degGW(P ), where a is the
least positive integer in H(P ), then P is a GW point.

(2) On Definition 1.3, the Galois group of the Galois extension
k(C)/f∗(k(P1)) is isomorphic to the group Gal(f) := {σ ∈ Aut(C) | f ◦σ = f},
and the group is a cyclic group since σ(P ) = P for every σ ∈ Gal(f).
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We denote 〈a, b〉 as the semigroup generated by elements a, b ∈ N.

Theorem 1.2 (Theorem 2.3 in [7]). If a point P ∈ P2 is a Galois point for a
plane curve C, then some of the ramification points of πP are weak GW points
with H(Q) = 〈d− 1, d〉. More precisely,

(1) if P is an inner Galois point, then P is a GW point, and H(P ) =
〈d− 1, d〉.

(2) if P is an outer Galois point, then every ramification point Q of πP is
a weak GW point with H(Q) = 〈d− 1, d〉.

Conversely, if Q is a weak GW point of a curve C with H(Q) = 〈d− 1, d〉,
then C is isomorphic to a plane curve of degree d and Q is a ramification point
of the projection from a Galois point.

In the study presented in this paper, as in Theorem 1.1, we investigate the
number of weak GW points of which the Weierstrass semigroups are generated
by two positive integers.

Our main theorem is as follows.

Theorem 1.3. Let a, b ∈ N satisfy that gcd(a, b) = 1, 2 < a and a + 1 < b.
Let C be a curve.

(1) If b ≡ a − 1 (mod a), then the number of GW points P ∈ C with
H(P ) = 〈a, b〉 is 0 or b+ 1. If b 6≡ a− 1 (mod a), then the number is
equal to 0 or 1.

(2) The number of weak GW points P ∈ C with H(P ) = 〈a, b〉 and b ∈
degGW(P ) is equal to 0 or 1.

(3) There exists a weak GW point P ∈ C with H(P ) = 〈a, b〉 and a, b ∈
degGW(P ) if and only if C is birationally equivalent to the singular
plane curve Xb = Y aZb−a + Zb.

It must be noted that by Theorem 1.2, for the case of a + 1 = b, studying
weak GW points with H(P ) = 〈a, b〉 is the same as studying the Galois points
for plane curves. Thus, we have Theorem 1.1.

On the other hand, Coppens proved the following, recently.

Theorem 1.4 ([4]). Let a, b ∈ N satisfy that gcd(a, b) = 1, 2 < a and a+1 < b.
Assume that b 6≡ a − 1 (mod a). Let C be a curve. Then, the number of
Weierstrass points P ∈ C with H(P ) = 〈a, b〉 is equal to 0 or 1.

By Theorem 1.4, when b 6≡ a − 1 (mod a), Theorem 1.3(1) and (2) are
obvious; this notwithstanding, we present our proof in this paper.

In Section 2, we provide some preliminary results on weak GW points and
use these results for the proof of Theorem 1.3. The proof of this theorem
appears in Section 3. Section 4 contains some examples of weak GW points.

2. Preliminary

In this section, let a, b be integers such that 1 < a < b and gcd(a, b) = 1.
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Lemma 2.1. If there exists a point P ∈ C with H(P ) = 〈a, b〉, then g =
(a− 1)(b− 1)/2 and K ∼ (2g − 2)P .

Proof. Let r : {1, . . . , a − 1} → {1, . . . , a − 1} be the map given by r(i) ≡ bi

(mod a). Since gcd(a, b) = 1, the map r is bijective. In particular,
∑a−1

i=1 r(i) =∑a−1
i=1 i = a(a−1)/2. For i = 0, . . . , a−1, we have that ib ∈ H(P ) and ib−a 6∈

H(P ) . Hence, Z≥0 \H(P ) = {ib − ja | i = 1, . . . , a − 1, j ∈ N, ib − ja > 0}
and

g = #(Z≥0 \H(P )) =

a−1∑
i=1

(ib− r(i))/a = (a− 1)(b− 1)/2.

According to the Riemann-Roch theorem, dimH0(C,OC((2g − 1)P )) = g.
Since 2g − 1 = (a − 1)b − a 6∈ H(P ), we have dimH0(C,OC((2g − 2)P )) = g.
The Riemann-Roch theorem has that dimH0(C,OC(KC − (2g − 2)P )) = 1.
Hence, we see K ∼ (2g − 2)P . �

Based on the proof of Theorem 10.1 and Corollary 6.3 in [2], or Proposition 1
in [4], we have the following.

Theorem 2.1 ([2,4]). Assume that a+ 1 < b and there exists a point P on C
with H(P ) = 〈a, b〉. Then, the gonality of C is equal to a, and a base point free
a-gonal pencil of C is unique, that is |aP |.

The two assertions below are fundamental on study of a weak GW point P
of a curve C with H(P ) = 〈a, b〉.

Proposition 2.1 ([7]). If P is a weak GW point of a curve C with H(a) =
〈a, b〉, then a ∈ degGW(P ) or b ∈ degGW(P ).

Proposition 2.2 ([7]). Let P be a weak GW point of a curve C with a ∈
degGW(P ) (resp. b ∈ degGW(P )) and H(P ) = 〈a, b〉. Then, there exist
rational functions x and y ∈ k(C) with (x)∞ = aP and (y)∞ = bP such

that k(C) = k(x, y) and ya =
∏b

i=1(x − ci) (resp. xb =
∏a

i=1(y − ci)), where
c1, c2, . . . are mutually distinct elements in k.

Remark 2.1. Let f : C → P1 be a Galois morphism of degree a or b such that
P is a total ramification point. Then, every ramification point of f is a total
ramification point.

Some results on the relations between Galois points for a plane curve and
weak GW points with certain Weierstrass semigroups through double coverings
are described in [7]. We first review one of these results as follows, after which
we use it below.

Lemma 2.2 ([7]). Let P be a weak GW point of a curve C with H(P ) =
〈a, 2a − 1〉 and 2a − 1 ∈ degGW(P ). Let ϕ : C → P1 be a Galois morphism
of degree 2a− 1 such that P is a total ramification point. Let P1, . . . , P2a−1 be
mutually distinct points such that P1 + · · ·+ P2a−1 is a fiber of ϕ. Then, there
exists a nonsingular plane curve D ⊂ P2 of degree 2a and a double covering
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f : D → C such that Branch(f) = {P, P1, . . . , P2a−1} and f−1(P ) is an inner
Galois point for D.

Proof. We construct a double covering by the method in [1, I.17] as follows. Let
L := OC(aP ), L be its total space, and p : L → C be the bundle projection.
Note that 2aP ∼ P + P1 + · · · + P2a−1. Let s be a global section of L⊗2
such that div(s) = P + P1 + · · · + P2a−1. Let t ∈ Γ(L, p∗L) be a tautological
section. Then, the zero divisor of p∗s − t2 defines a nonsingular curve in L,
say D. Let f := p|D : D → C. We have that f is a double covering such that
Branch(f) = {P, P1, . . . , P2a−1}. Remark that this double covering depends on
only the branch locus and L. To show that D is a nonsingular plane curve and
f−1(P ) is a Galois point, let us investigate this construction in detail.

By Proposition 2.2, we may assume that C is the compactification of the
affine plane curve x2a−1 =

∏a
i=1(y − ci). Let C ′ be the singular plane curve

given by X2a−1 = Za−1 ∏a
i=1(Y − ciZ), and ρ : C → C ′ be the resolution

of singularities. Note that C ′ has a cusp (0 : 1 : 0) and ρ(P ) = (0 : 1 : 0).
Then, x = ρ∗((X/Z)|C′), y = ρ∗((Y/Z)|C′), and ϕ : C → P1 is given by the
projection π(0:1:0) : (x : y : 1) 7→ (y : 1). We may assume that P1 + · · ·+ P2a−1
is the fiber ϕ−1((0 : 1)), i.e., we may assume that (y)0 = P1 + · · ·+ P2a−1.

Let U1 := C \ {P}, and U2 be a sufficiently small neighborhood of P . Then,
{(U1, 1), (U2, 1/x)} is a system of local equations of aP . Hence, {g11 = 1, g12 =
x, g21 = 1/x, g22 = 1} is a system of transition functions of L. The total space
L is obtained by the gluing of U1×A1 and U2×A1 with the equivalent relation
(Q1, t1) ∼ (Q2, t2) ⇔ Q1 = Q2, t1 = g12t2. The system of transition functions
of L⊗2 is given by g212 = x2. Let s be the section given by the system of local
equations {(U1, y), (U2, y/x

2)}. Then, div(s) = P + P1 + · · · + P2a−1. Hence,
D is given by {(U1 × A1, t21 − y), (U2 × A1, t22 − y/x2)}.

We see that D is isomorphic to the plane curve defined by X2a−1Z =∏a
i=1(Y 2 − ciZ

2). Indeed, D ∩ (U1 × A1) is isomorphic to the affine curve
defined by x2a−1 −

∏a
i=1(y − ci) = 0 and t21 − y = 0 in A3, and this is isomor-

phic to the affine plane curve defined by x2a−1 =
∏a

i=1(t21 − ci) in A2. On the
other hand, the plane curve X2a−1Z =

∏a
i=1(Y 2 − ciZ2) is nonsingular, and

contains the affine plane curve x2a−1 =
∏a

i=1(t21 − ci) as a Zariski open set.
We treat D as the plane curve X2a−1Z =

∏a
i=1(Y 2− ciZ2). Since f is given

by D 3 (X : Y : Z) 7→ (XZ : Y 2 : Z2) ∈ C ′, we have that f−1(P ) = {(1 : 0 :
0)}. By [11, Proposition 5], the point (1 : 0 : 0) is an inner Galois point for
D. �

3. Proof of Theorem 1.3

Let a, b ∈ N satisfy that gcd(a, b) = 1, 2 < a and a + 1 < b. We prove
Theorem 1.3.
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3.1. Proof of Theorem 1.3(1)

We prove that if b 6≡ a−1 (mod a), then the number of Weierstrass points P
with H(P ) = 〈a, b〉 equals 0 or 1. In order to demonstrate the contraposition,
let P and Q be two distinct GW points with H(P ) = H(Q) = 〈a, b〉. By
Theorem 2.1, we have that aP ∼ aQ. By Lemma 2.1, we have that (2g−2)P ∼
(2g − 2)Q, where g = (a − 1)(b − 1)/2. Thus, (b + 1)P ∼ (b + 1)Q, that is,
b+ 1 ∈ H(P ) = 〈a, b〉. Hence, b+ 1 ≡ 0 (mod a).

We assume b ≡ a−1 (mod a) and we prove that the number of GW points P
with H(P ) = 〈a, b〉 equals 0 or b+1. Let P be a GW point with H(P ) = 〈a, b〉.
By Theorem 2.2, there exist x, y ∈ k(C) such that k(x, y) = k(C), (x)∞ = aP ,

(y)∞ = bP and ya =
∏b

i=1(x− ci), where c1, . . . , cb ∈ k are mutually distinct.
Then, we have that the morphism Φ|aP | is given by the function x, and the
ramification point Qi holds for x(Qi) = ci and y(Qi) = 0. The number of
these points P,Q1, Q2, . . . , Qb equals b + 1, and aP ∼ aQi for every i. By
Theorem 2.1, if a point Q holds H(Q) = 〈a, b〉, Q must be P or Qi. Let us
prove that H(Qi) = 〈a, b〉. Let m be an integer such that b = (m + 1)a − 1.
Let x̃i := 1/(x − ci) and ỹi := x̃m+1

i y. Because div(x − ci) = aP − aQi

and div(y) = Q1 + · · · + Qb − bP , we have that div(x̃i) = aP − aQi and
div(ỹi) = (m+1)(aP−aQi)+Q1+· · ·+Qb−bP = (Q1+· · ·+Qb−Qi)+P−bQi.
Hence, a, b ∈ H(Qi); thus, 〈a, b〉 ⊂ H(Qi). Since the number of elements of
Z≥0 \H(Qi) = g = Z≥0 \ 〈a, b〉, we conclude that H(Qi) = 〈a, b〉.

Remark 3.1. Let P be a GW point with H(P ) = 〈a, b〉. In the case that
b 6≡ a − 1 (mod a), we can also calculate the Weierstrass semigroup H(Qi),
where Qi is a ramification point of Φ|aP |. See [8].

3.2. Proof of Theorem 1.3(2)

We prove the theorem by contradiction by assuming that there exist two
weak GW points P andQ on C withH(P ) = H(Q) = 〈a, b〉 and b ∈ degGW(P ),
b ∈ degGW(Q).

Claim 3.1. b ≡ a− 1 (mod a).

By Theorem 2.1 and Lemma 2.1, we have aP ∼ aQ and (2g − 2)P ∼
(2g − 2)Q. Since g = (a− 1)(b− 1)/2, we have (b + 1)P ∼ (b + 1)Q. That is,
b+ 1 is a non-gap value of P . Since H(P ) = 〈a, b〉, we have b+ 1 ≡ 0 (mod a),
so, b ≡ a− 1 (mod a).

Claim 3.2. The number of weak GW points R with H(R) = 〈a, b〉 and b ∈
degGW(R) equals b+ 1.

By Theorem 2.1, for a point R with H(R) = 〈a, b〉, we have aP ∼ aR.
By the Riemann-Hurwitz formula, the number of total ramification points of
Φ|aP | : C → P1 is at most b+ 1. Hence, the number of points R with H(R) =
〈a, b〉 is at most b+ 1.
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From Proposition 2.2, we see that for a Galois covering ϕ : C → P1 of degree
b such that P is a total ramification point, every ramification point is a total
ramification point. Let σ be a generator of the Galois group belonging to ϕ,
which is a cyclic group. Then, the set of ramification points of ϕ coincides with
the set of fixed points of σ. We have σ(Q) 6= Q. Indeed, if σ(Q) = Q, then
bP ∼ bQ. Since aP ∼ aQ and gcd(a, b) = 1, we have P ∼ Q, and this is a
contradiction. Since every ramification point of ϕ is a total ramification point,
the number of elements of {σi(Q) | i = 0, . . . , b − 1} equals b. Let P∞ := P ,
Pi := σi−1(Q) (i = 1, . . . , b). Every Pi is a weak GW point and H(Pi) = 〈a, b〉
and b ∈ degGW(Pi). Hence, we conclude Claim 3.2.

For Pi (i = 1, . . . , b,∞) above, let ϕi : C → P1 be a Galois covering of degree
b such that Pi is a total ramification point, and let σi be a generator of the
Galois group Gal(ϕi) belonging to ϕi. Let G := 〈σ∞, σ1, . . . , σb〉.
Claim 3.3. #G ≥ b2.

Since G ⊃ {1}∪ {σl
i | i =∞, 1, . . . , b, l = 1, . . . , b− 1} and these b2 elements

are mutually distinct, we conclude Claim 3.3.
Let Branch(π) = {y1, . . . , yn} be the branch locus of the natural map π :

C → C/G.

Claim 3.4. π−1(π(P∞)) = {P∞, P1, . . . , Pb}.
By the definition of Pi, {σl

∞(P1) | l = 0, . . . , b−1} = {P1, P2, . . . , Pb}. Since
the number of weak GW points P with H(P ) = 〈a, b〉 and b ∈ degGW(P )
equals b + 1, we have {σl

1(P∞) | l = 0, . . . , b − 1} = {P∞, P2, . . . , Pb}. Hence,
{P∞, P1, . . . , Pb} ⊂ π−1(π(P∞)).

For a point R ∈ π−1(π(P∞)), there exists σ ∈ G such that σ(P∞) = R. The
point R is a weak GW point with H(R) = 〈a, b〉 and b ∈ degGW(R). Hence,
R ∈ {P∞, P1, . . . , Pb}. Namely, {P∞, P1, . . . , Pb} ⊃ π−1(π(P∞)). We conclude
Claim 3.4.

Let y1 = π(P∞). Let Q∞ be a ramification point of ϕ∞ such that Q∞ 6= P∞.
Since Q∞ 6∈ {P∞, P1, . . . , Pb}, we have π(Q∞) 6= y1. Since σ∞(Q∞) = Q∞, we
have π(Q∞) ∈ Branch(π). Let y2 = π(Q∞). For yi ∈ Branch(π) (i = 1, . . . , n),
let ri be the ramification number of π at a point in π−1(yi). (Remark that the
ramification number at every point in π−1(yi) equals ri, since π is Galois.) We
may assume r3 ≤ r4 ≤ · · · ≤ rn.

Claim 3.5. r1 ≥ b, r2 ≥ b and C/G ∼= P1.

Both P∞ and Q∞ are ramification points of ϕ∞ : C → P1 = C/〈σ∞〉 with
ramification number b. Since 〈σ∞〉 is a subgroup of G, the map π can be
factored as π : C → C/〈σ∞〉 → C/G. Hence, r1 ≥ b and r2 ≥ b. Since
C/〈σ∞〉 ∼= P1, we have C/G ∼= P1.

Claim 3.6. b = 2a− 1.

By the Riemann-Hurwitz formula, 2g−2 = #G(−2)+
∑n

i=1 #G/ri ·(ri − 1).
Let T := −2 +

∑n
i=1 (1− 1/ri). Then, #G = (2g − 2)/T , and T is a positive
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rational number. When n = 3 and (r1, r2, r3) = (b, b, 2), we have the minimum
of T and therefore the maximum of #G. In this case, T = −2+2(b−1)/b+1/2 =
(b− 4)/(2b). Hence, #G ≤ 2b/(b− 4) · (2g− 2) = 2b(ab− a− b− 1)/(b− 4). By
b2 ≤ #G, we have b2(b−4) ≤ 2b(ab−a−b−1), so b2−2(a+1)b+2(a+1) ≤ 0.

Hence, b ≤ a + 1 +
√

(a+ 1)2 − 2(a+ 1) < 2a + 1. By Claim 3.1, we have
b = 2a− 1.

Since P∞ is a weak GW point with H(P∞) = 〈a, b〉, b = 2a − 1 and P1 +
· · ·+ Pb is a fiber of ϕ∞, by Lemma 2.2, there exist a nonsingular plane curve
D∞ ⊂ P2 and a double covering f∞ : D∞ → C such that Branch(f∞) =
{P∞, P1, . . . , Pb} and P̄∞ := f−1∞ (P∞) is an inner Galois point for D∞. We
also have that P1 is a weak GW point with H(P1) = 〈a, b〉, b = 2a − 1 and
P2 + · · ·+Pb +P∞ is a fiber of ϕ1. Hence, there also exist a nonsingular plane
curve D1 ⊂ P2 and a double covering f1 : D1 → C such that Branch(f1) =
{P∞, P1, . . . , Pb} and P̄1 := f−11 (P1) is an inner Galois point for D1.

Claim 3.7. The two double coverings f∞ and f1 are isomorphic. Namely, there
exists an isomorphism h : D∞ → D1 such that f∞ = f1 ◦ h.

The ramification locus of f1 coincides with the ramification locus of f∞,
and f1 is obtained by O(aP1). Since aP∞ ∼ aP1, we have an isomorphism
O(aP∞) ∼= O(aP1). From the isomorphism between the line bundles, we have
h, and we conclude Claim 3.7.

Since D∞ and D1 are nonsingular plane curves of degree 2a > 3, by [3], the
isomorphism h : D∞ → D1 can be extended to a projective transformation of
P2. Namely, there exists H ∈ Aut(P2) such that H(D∞) = D1 and H|D∞ = h.
Then, H(P̄∞) must be an inner Galois point for D1. By Theorem 1.1, the
number of inner Galois points for each D∞ and D1 is at most one. Hence,
h(P̄∞) = P̄1. Since f∞ = f1 ◦ h, we have P∞ = P1, and this is a contradiction.

Now we conclude Theorem 1.3(2).

3.3. Proof of Theorem 1.3(3)

Let P be a weak GW point with H(P ) = 〈a, b〉 and a, b ∈ degGW(P ). Es-
pecially, b ∈ degGW(P ), thus by Proposition 2.2, there exist rational functions
x and y ∈ k(C) with (x)∞ = aP and (y)∞ = bP such that k(C) = k(x, y)
and xb =

∏a
i=1(y − ci), where each c1, . . . , ca are mutually distinct. By Theo-

rem 2.1, a base point free a-gonal pencil is unique, it must be given by x. By
Remark 2.1, there exist α, β ∈ k such that

∏a
i=1(y− ci)− αb = (y− β)a. Note

that α 6= 0. Let x̄ := x/α and ȳ := (y− β) ·α−b/a. Now we obtain the relation
x̄b = ȳa + 1. Hence, C is birationally equivalent to the singular plane curve
defined by Xb = Y aZb−a + Zb.

We prove the converse. Let C ′ be a singular plane curve given by Xb =
Y aZb−a + Zb and P ′ := (0 : 1 : 0). We have Sing(C ′) = {P ′}, where P ′ is a
cusp. Let ρ : C → C ′ be the resolution of singularity and P := ρ−1(P ′) ∈ C.
We have that g := g(C) = (a − 1)(b − 1)/2. Let x := X/Z|C′ , y := Y/Z|C′ ∈
k(C ′) = k(C). Then, (x)∞ = aP and (y)∞ = bP . Namely, a, b ∈ H(P ).
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Since g = (a − 1)(b − 1)/2 = #(Z≥0 \ 〈a, b〉) = #(Z≥0 \H(P )), we have that
H(P ) = 〈a, b〉. The morphism Φ|aP | is given by x. Since ya = xb − 1, where

Φ|aP | is Galois and P is a total ramification point. Let f : C → P1 be the

morphism given by y. Since xb = ya + 1, we have that deg f = b, f is Galois,
and P is a total ramification point of f . Therefore, P is a weak GW point with
H(P ) = 〈a, b〉 and a, b ∈ degGW(P ).

4. Examples

The following is an example in which a curve has one GW point with semi-
group 〈a, b〉.

Example 4.1. Let C ′ be the singular plane curve Y 3Z4 = X7 − XZ6 and
P ′∞ := (0 : 1 : 0). Then, Sing(C ′) = {P ′∞} and P ′∞ is a cusp. Let ρ : C → C ′ be
the resolution of singularity, and P∞ := ρ−1(P ′∞). We see the genus g(C) = 6.
Let x := (X/Z)|C′ , y := (Y/Z)|C′ ∈ k(C ′) = k(C). Then, k(C) = k(x, y),
(x)∞ = 3P∞, and (y)∞ = 7P∞. Hence, H(P∞) = 〈3, 7〉.

The morphism Φ|3P∞| : C → P1 corresponds to x. Since y3 = x7−x, we have
that Φ|3P∞| is Galois, i.e., P∞ is a GW point with H(P∞) = 〈3, 7〉. Let P ′1 :=

(0 : 0 : 1), P ′i := (ζi−26 : 0 : 1) (i = 2, . . . , 7), where ζ6 is a primitive 6th root of
unity. Let Pi := ρ−1(P ′i ) (i = 1, . . . , 7). Then, the ramification locus of Φ|3P∞|
is {P∞, P1, . . . , P7}. Hence, Pi (i = 1, . . . , 7) is also a GW point. However,
H(Pi) 6= 〈3, 7〉. In fact, (1/x)∞ = 3P1, (y/x3)∞ = 8P1, (y2/x5)∞ = 13P1,
(1/(x− ζi−26 ))∞ = 3Pi, (y/(x− ζi−26 )3)∞ = 8Pi and (y2/(x− ζi−26 )5)∞ = 13Pi,
where i = 2, . . . , 7. Hence, H(Pi) = 〈3, 8, 13〉 since g(C) = 6 = #(Z≥0\H(Pi)).

We see 7 6∈ degGW(P∞). To prove this by contradiction, let us assume that
there exists a Galois covering f : C → P1 of degree 7 such that P∞ is a total
ramification point of f . Then, f is given by a linear subsystem of |7P∞|, hence
f is the composition of Φ|7P∞| : C → P3 and the projection πL : P3 · · · → P1

from some line L. Let (X0 : X1 : X2 : X3) be a system of homogeneous
coordinates of P3. Let Φ|7P∞| be given by P 7→ (1 : x(P ) : x2(P ) : y(P )).
We see that Pi (i = 1, . . . , 7) is not a ramification point of f . Indeed, if Pi

is a ramification point of f , then 7P∞ ∼ 7Pi. Since 3P∞ ∼ 3Pi, we have
P∞ ∼ Pi, and this contradicts C 6∼= P1. Since a point in f−1(f(Pi)) is a point
with the Weierstrass semigroup 〈3, 8, 13〉. By Theorem 2.1, all points with the
Weierstrass semigroup 〈3, 8, 13〉 are P1, . . . , P7. We have that the line L and 7
points Φ|7P∞|(P1), . . . ,Φ|7P∞|(P7) lie on a single hyperplane in P3, i.e., L lies
on the hyperplane X3 = 0. Since P∞ is a total ramification point of f , we have
that L lies on the projective tangent plane at Φ|7P∞|(P∞) to Φ|7P∞|(C), that is
L lies on the hyperplane X0 = 0. Therefore, the line L is given by X0 = X3 = 0,
and πL : (X0 : X1 : X2 : X3) 7→ (X0 : X3), therefore f necessarily corresponds
to y. According to the Riemann-Hurwitz formula, since f is Galois, the number
of branch points of f must be equal to 4. However, from x7−x−y3 = 0, we can
find 19 branch points of f , i.e., y =∞ and 18 roots of equations x7−x−y3 = 0
and 7x6 − 1 = 0. This is a contradiction.
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The following is an example in which a curve has one pseudo-GW point with
semigroup 〈a, b〉.

Example 4.2. Let C ′ be the singular plane curve X5 = Y 3Z2 − Y Z4 and
P ′∞ := (0 : 1 : 0). Then, Sing(C ′) = {P ′∞} and P ′∞ is a cusp. Let ρ : C → C ′ be
the resolution of singularity, and P∞ := ρ−1(P ′∞). We see the genus g(C) = 4.
Let x := (X/Z)|C′ , y := (Y/Z)|C′ ∈ k(C ′) = k(C). Then, k(C) = k(x, y),
(x)∞ = 3P∞ and (y)∞ = 5P∞. Hence, H(P∞) = 〈3, 5〉.

The morphism Φ|3P∞| : C → P1 corresponds to x. We see that Φ|3P∞|
is not Galois, i.e., P∞ is not a GW point. Indeed, if Φ|3P∞| is Galois, then
the ramification index at every ramification point of Φ|3P∞| equals three. By
the Riemann-Hurwitz formula, the number of branch points of Φ|3P∞| must be
equal to six. However, we can find 11 branch points of Φ|3P∞|, i.e., x =∞ and

10 roots of equations y3 − y− x5 = 0 and 3y2 − 1 = 0. This is a contradiction.
Let f : C → P1 be the morphism corresponding to y. Then, f is Galois

since x5 − y3 + y = 0, and P∞ is a total ramification point. Hence, P∞ is a
pseudo-GW point with H(P∞) = 〈3, 5〉.

The following is an example in which a curve has b + 1 GW points with
semigroup 〈a, b〉.

Example 4.3. Let C ′ be the singular plane curve X5−5X3Z2+4XZ4 = Y 3Z2

and P ′∞ := (0 : 1 : 0). Then, Sing(C ′) = {P ′∞} and P ′∞ is a cusp. Let ρ : C →
C ′ be the resolution of singularity, and P∞ := ρ−1(P ′∞). Let P ′1 := (0 : 0 : 1),
P ′2 = (1 : 0 : 1), P ′3 = (−1 : 0 : 1), P ′4 = (2 : 0 : 1), P ′5 = (−2 : 0 : 1),
and Pi := ρ−1(P ′i ) (i = ∞, 1, . . . , 5). Then, H(Pi) = 〈3, 5〉 (i = ∞, 1, . . . , 5).
Let x := (X/Z)|C′ , y := (Y/Z)|C′ ∈ k(C ′) = k(C). Then, Φ|3P∞| : C → P1

corresponds to x. The point Pi (i = ∞, 1, . . . , 5) is a total ramification point
of Φ|3P∞| and 3P∞ ∼ 3Pi. Since y3 = x(x − 1)(x + 1)(x − 2)(x + 2), Φ|3P∞|
is Galois. Hence, the 6 points in Pi (i = ∞, 1, . . . , 5) are GW points with
H(Pi) = 〈3, 5〉.

Furthermore, we see that 5 6∈ degGW(Pi) for i =∞, 1, . . . , 5. Here, we prove
this for i =∞ and 1 as below. We can prove this for the other cases by using
a similar argument.

Assume that 5 ∈ degGW(P∞). Let f : C → P1 be a Galois covering of
degree 5 such that P∞ is a total ramification point of f . Then, f is given by
a linear subsystem of |5P∞|, that is, f can be expressed as the composition
of Φ|5P∞| : C → P2 and the projection πQ : P2 99K P1 from some point Q.
Remark that Φ|5P∞|(C) = C ′ and Φ|5P∞| = ρ. We see that Pi (i = 1, . . . , 5)
is not a ramification point of f . Indeed, if Pi is a ramification point of f ,
then 5P∞ ∼ 5Pi. Since 3P∞ ∼ 3Pi, we have P∞ ∼ Pi, and this contradicts
C 6∼= P1. By Theorem 1.3, all GW points with H(P ) = 〈3, 5〉 are P1, . . . , P5,
and P∞. Because a point in f−1(f(Pi)) is also a GW point with H(P ) = 〈3, 5〉,
we have that Φ|5P∞|(P1), . . . ,Φ|5P∞|(P5) and Q are collinear. Since P∞ is a
total ramification point of f , we have that Q is on the projective tangent line
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at P ′∞ to C ′. Therefore, Q must be (1 : 0 : 0) and f must be given by y.
By the Riemann-Hurwitz formula, the number of branch points of f must be
equal to four. However, from x5 − 5x3 + 4x − y3 = 0, we can find 13 branch
points of f , i.e., y =∞ and 12 roots of equations x5 − 5x3 + 4x− y3 = 0 and
5x4 − 15x2 + 4 = 0. This is a contradiction.

Assume that 5 ∈ degGW(P1). Let f : C → P1 be a Galois covering of
degree 5 such that P1 is a total ramification point of f . Then, f is given by
a linear subsystem of |5P1|, that is, f can be expressed as the composition
of Φ|5P1| : C → P2 and the projection πQ : P2 99K P1 from some point Q.

Let C̄ := Φ|5P1|(C). Since (1/x)∞ = 3P1 and (y/x2)∞ = 5P1, we have that

Φ|5P1| is given by (1 : 1/x : y/x2). Then, C̄ is defined by X1(X0 − 2X1)(X0 +

2X1)(X0 − X1)(X0 + X1) = X2
0X

3
2 , where (X0 : X1 : X2) is a system of

homogeneous coordinates of P2. We also have that Φ|5P1|(P1) = (0 : 0 : 1),
Φ|5P1|(P2) = (1 : 1 : 0), Φ|5P1|(P3) = (1 : −1 : 0), Φ|5P1|(P4) = (2 : 1 : 0),
Φ|5P1|(P5) = (2 : −1 : 0) and Φ|5P1|(P∞) = (1 : 0 : 0). We see that Pi (i =
2, . . . , 5,∞) is not a ramification point of f . Indeed, if Pi is a ramification point
of f , then 5P1 ∼ 5Pi. Since 3P1 ∼ 3Pi, we have P1 ∼ Pi, and this contradicts
C 6∼= P1. By Theorem 1.3, all GW points with H(P ) = 〈3, 5〉 are P1, . . . , P5,
and P∞. Because a point in f−1(f(Pi)) is also a GW point with H(P ) = 〈3, 5〉,
we have that Φ|5P1|(P2), . . . ,Φ|5P1|(P5),Φ|5P1|(P∞) and Q are collinear. Since
P1 is a total ramification point of f , we have that Q is on the projective tangent
line at Φ|5P1|(P1) to C̄. Therefore, Q must be (0 : 1 : 0) and f must be given

by y/x2. By the Riemann-Hurwitz formula, the number of branch points of f
must be equal to four. However, from 4(1/x)5 − (1/x)3 + (1/x)− (y/x2)3 = 0,
we can find 13 branch points of f , i.e., y/x2 = ∞ and 12 roots of equations
4(1/x)5 − (1/x)3 + (1/x)− (y/x2)3 = 0 and 20(1/x)4 − 3(1/x)2 + 1 = 0. This
is a contradiction.

In the following example a curve has a weak GW point P with semigroup
〈a, b〉 and a, b ∈ degGW(P ).

Example 4.4. Let C ′ be the singular plane curve X5 = Y 3Z2 + Z5 and
P ′∞ := (0 : 1 : 0). Then, Sing(C ′) = {P ′∞} and P ′∞ is a cusp. Let ρ :
C → C ′ be the resolution of singularity. We see the genus g(C) = 4. Let
P ′i := (ζi−15 : 0 : 1) (i = 1, . . . , 5), where ζ5 is the primitive 5th root of unity,
and Pi := ρ−1(P ′i ) (i = ∞, 1, . . . , 5). Then, H(Pi) = 〈3, 5〉 (i = ∞, 1, . . . , 5).
Let x := (X/Z)|C′ , y := (Y/Z)|C′ ∈ k(C ′) = k(C). Then, Φ|3P∞| : C → P1

corresponds to x. The point Pi (i =∞, 1, . . . , 5) is a total ramification point of
Φ|3P∞|. Since y3 = x5−1, Φ|3P∞| is Galois. Thus, Pi (i =∞, 1, . . . , 5) is a GW

point with H(Pi) = 〈3, 5〉. Let f : C → P1 be the morphism corresponding to
y. Then, f is Galois and P∞ is a total ramification point. Therefore, P∞ is a
weak GW point with 3, 5 ∈ degGW(P∞) and H(P∞) = 〈3, 5〉. By Theorem 1.3,
we have that 5 6∈ degGW(Pi) (i = 1, . . . , 5).
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