DOI QR코드

DOI QR Code

Investigation of Pellet-Clad Mechanical Interaction in Failed Spent PWR Fuel

  • Received : 2019.09.18
  • Accepted : 2019.10.23
  • Published : 2019.10.31

Abstract

A failed spent fuel rod with 53,000 MWd/tU from a nuclear power plant was characterized, and the fission products and oxygen layer in the pellet-clad mechanical interaction region were observed using an EPMA (Electron Probe Micro-Analyzer). A sound fuel rod burned under similar conditions was used to compare and analyze, the results of the failed fuel rod. In the failed fuel rod, the oxide layer represented $10{\mu}m$ of the boundary of the cladding, and $35{\mu}m$ of the region outside the cladding. By comparison, in the sound fuel rod, the oxide layer was $8{\mu}m$, observed in the cladding boundary region. The cladding inner surface corrosion and the resulting fuel-cladding bonding were investigated using an EPMA. Zirconium existed in the bonding layer of the (U, Zr)O compound beyond the pellet cladding interaction gap of $20{\mu}m$, and composition of UZr2O3 was observed in the failed fuel rod. This paper presents the results of the EPMA examination of a spent fuel specimen, and a technique to analyze fission products in the pellet-clad mechanical interaction region.

Keywords

References

  1. J. Julien, I. Z-Aubrun, J. Sercombe, G. Raveu, and J. M. Gatt, Proc. Top Fuel 2012, p. 96, European Nuclear Society, Manchester, UK (2012).
  2. B. Cox, J. Nucl. Mater., 172, 249 (1990). https://doi.org/10.1016/0022-3115(90)90282-R
  3. A. Denis and A. Soba, J. Nucl. Eng. Des., 223, 211 (2003). https://doi.org/10.1016/S0029-5493(02)00390-4
  4. N. Marchal, C. Campos, and C. Garnier, Comput. Mater. Sci., 45, 821 (2009). https://doi.org/10.1016/j.commatsci.2008.10.015
  5. H. Kleykamp, J. Nucl. Mater., 131, 230 (1985). https://doi.org/10.1016/0022-3115(85)90460-X
  6. R. Restani, E. T. Aerne, G. Bart, H. P. Linder, A. Muller, and F. Petrik, Characterisation of PWR Cladding Hulls from Commercial Reprocessing, Technical Reprot NTB-92-13, Nagra, Swizerland (1992).
  7. Y. H. Jung, K. H. Kang, I. H. Jung, J. M. Park, G. S. Kim, Y. S. Choo, K. C. Song, and K. P. Hong, J. Nucl. Mater., 377, 444 (2008). https://doi.org/10.1016/j.jnucmat.2008.03.023
  8. Y.-k Ha, Chemical interaction between $UO_{2}$ fuel and Zircaloy clad, KAERI/AR-697 (2004).
  9. K. Maeda, The measurement and evaluation of fuel cladding chemical interaction between Fuels and cladding materials, KAERI-JAEA Experts Meeting (2010).
  10. Y. Nishino, A. R. Krauss, Y. Lin, and D. M. Gruen, J. Nucl. Mater., 228, 346 (1996). https://doi.org/10.1016/0022-3115(95)00194-8
  11. D. J. Park, J. Y. Park, and Y. H. Jeong, J. Nucl. Mater., 412, 233 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.010
  12. H. C. Suk, K.-S. Sim, and J. H. Park, J. Nucl. Eng. Des., 165, 81 (1996). https://doi.org/10.1016/0029-5493(96)01184-3
  13. Y. H. Jung, S. J. Baik, Y. G. Jin, and S. B. Ahn, Proc. KNS Spring Meeting, Jeju, Korea (2019).