DOI QR코드

DOI QR Code

Reaction Force Analysis on the Journal Bearing of Shafting System with Contra-Rotating Propeller

상반회전 프로펠러 축계 저널 베어링 반력해석

  • Shin, Sang-Hoon (Department of Aero Mechanical Engineering, Kyungwoon University) ;
  • Lee, Seung-Min (Department of Aero Mechanical Engineering, Kyungwoon University)
  • 신상훈 (경운대학교 항공기계공학과) ;
  • 이승민 (경운대학교 항공기계공학과)
  • Received : 2019.07.10
  • Accepted : 2019.10.04
  • Published : 2019.10.31

Abstract

According to the International Maritime Organization (IMO) 2020 Regulation, ships operating outside designated emission control areas (ECA) have to use low-sulfur oil with a sulfur content of 0.5% or less by January 2020. To minimize the consumption of high-priced low-sulfur oil, it is urgent to introduce efficient energy-saving devices (ESD), and contra-rotating propeller (CRP) systems are well known to be the most effective one. The shafting system that drives a CRP is composed of an inner shaft and an outer one and has a mutually influential system that is much more complex and heavier than a general shafting system. An initial design was carried out to install a CRP system for the first time in Korea. The purpose of this study is to verify whether the journal bearing meets the classification's design criteria through a bearing reaction force analysis for the classification's approval of the initial design. It is ideal for the thrust of the propeller to act on the center of the shaft, but thrust eccentricity occurs due to the uneven wake caused by the stern shape. Load conditions were applied while considering thrust eccentricity to perform the shaft analysis, and the results were compared with the classification's criteria.

국제해사기구(IMO) 2020 규정에 의해, 2020년 1월부터 지정된 배출규제해역 밖을 운항하는 선박도 황 함유량이 0.5% 이하인 저유황유를 사용하여야한다. 고가의 저유황유 소비를 최소화하기 위해 에너지저감 장치의 도입이 시급하며, 그 중에서도 상반회전 프로펠러 시스템이 가장 효과적이라고 알려져 있다. 상반회전 프로펠러를 구동하는 축계는 내축과 외축으로 구성되고 상호 영향을 주는 시스템으로 하나의 축으로 이루어진 일반 축계 시스템보다 훨씬 복잡하며 무거운 구조이다. 국내에서는 처음으로 상반회전 프로펠러 축계 시스템을 장착하기 위해 37K 정유운반선 용 상반회전 프로펠러 축계의 초기 설계가 진행되었다. 본연구의 목적은 초기 설계의 선급승인을 위해 베어링 반력해석을 수행하여, 저널 베어링이 선급에서 요구하는 설계기준을 만족하는지를 검증하는 것이다. 프로펠러의 추력은 축 중심에 작용하는 것이 이상적이지만, 선미부 선체 형상에 의해 발생하는 불균일한 반류 등의 영향으로 추력 편심이 발생한다. 본 연구에서는 추력 편심을 반영한 하중조건을 적용하여 축계해석을 수행하였고, 그 결과를 선급 요구 설계기준과 비교하였다.

Keywords

References

  1. Y. Inukai, "Development of Electric Propulsion Vessels with Contra-Rotating Propeller", Journal of the Japan Institute of Marine Engineering, Vol. 46, No. 3, pp.313-319, 2011. DOI: https://doi.org/10.5988/jime.46.313
  2. J. D. Van Manen and M. W. C. Oosterveld, "Model Tests on Contrarotating Propeller", 7th Symposium on Naval Hydrodynamics, Rome, Italy, 1968.
  3. M. L. Miller, Experimental Determination of Unsteady Forces on Counterrotating Propellers in Uniform Flow, David Naval Ship Research and Development Center Report SPD-659-01, 1976.
  4. K. S. Min, B. J. Chang and H. W. Seo, "Study on Contra-Rotating Propeller system design and full-scale performance prediction method", International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 1, pp.29-38, 2009. DOI: https://doi.org/10.3744/JNAOE.2009.1.1.029
  5. Y. Inukai, T. Kanemaru and J. Ando, "Prediction of Steady Performance of Contra-Rotating Propellers Including Wake Alignment", Journal of the Japan Society of Naval Architects and Ocean Engineers, Vol. 19, pp.31-38, 2014. DOI: https://doi.org/10.2534/jjasnaoe.19.31
  6. K. J. Paik, S. Hwang, J. Jung, T. Lee, Y. Y. Lee, H. Ahn and S. H. Van, "Investigation on the wake evolution of contra-rotating propeller using RANS computation and SPIV measurement", International Journal of Naval Architecture and Ocean Engineering, Vol. 7, No. 3, pp.595-609, 2015. DOI: https://doi.org/10.1515/ijnaoe-2015-0042
  7. M. Ko, A Study on Analysis of Shaft Alignment for the Contra-rotating Propeller, Master's thesis, Pusan National University, Pusan, Korea, 2009.
  8. S. H. Shin, "Effects of Propeller Forces on the Propeller Shaft Bearing during Going Straight and Turning of Ship", Journal of the Society of Naval Architects of Korea, Vol. 52, No. 1, pp.61-69, 2015. DOI: https://doi.org/10.3744/SNAK.2015.52.1.61
  9. BV, Rules for the Classification of Ships, Pt.C Ch.1 Sec.7, 2003.
  10. DNV, Rules for Classification of Ships, Pt.4 Ch.4 Sec.1, 2003.
  11. KR, Rules for Classification Steel Ships, Pt.5 Ch.3 Sec.3, 2003.
  12. NK, Rules for the Survey and Construction of Steel Ship, Pt.D Ch.6, 2003.
  13. S. J. Yoon, Aerodynamics, pp.311-312, Seongandang, 2018.
  14. B. J. Vartdal, T. Gjestland and T. I. Arvidsen, "Lateral Propeller Forces and their Effects on Shaft Bearings", First International Symposium on Marine Propulsors, Trondheim Norway, pp.475-481, June 2009.