DOI QR코드

DOI QR Code

국내 연속류 자전거도로의 차두시간 분포 모형 개발

Development of a Time Headway Distribution Model for Uninterrupted Traffic Flow Bikeway in Korea

  • 전우훈 (한국건설기술연구원 인프라안전연구본부 도로관리통합센터) ;
  • 이영인 (서울대학교 환경대학원) ;
  • 양인철 (한국건설기술연구원 인프라안전연구본부 도로관리통합센터)
  • Jeon, Woo Hoon (Integrated Road Management Center, Dept. of Infrastructure Safety Research, KICT) ;
  • Lee, Young-Ihn (Graduate School of Environmental Studies, Seoul National University) ;
  • Yang, Inchul (Integrated Road Management Center, Dept. of Infrastructure Safety Research, KICT)
  • 투고 : 2019.09.11
  • 심사 : 2019.10.21
  • 발행 : 2019.10.31

초록

본 연구에서는 국내의 연속류 자전거도로에 대한 차두시간 분포 모형을 개발하고자 하였다. 현장조사를 통해 수집된 데이터를 교통량으로 구분하여 분석하였으며, 교통량의 기준은 전체 교통량을 분포를 고려하여 1분당 8대 미만은 낮은 수준의 교통량으로 하고 8대 이상은 높은 수준의 교통량으로 구분하였다. 차두시간의 집계간격은 기존의 자동차교통류에서 일반적으로 적용해오던 0.5초를 적용하였다. 적용된 분포는 기본적인 정규분포와 함께 음지수분포, 전이된 음지수분포, 피어슨 III분포이며, 카이스퀘어 검정 분석결과 음지수분포와 전이된 음지수분포에서 방향과 교통량 구분 모두에서 이론치와 관측치간에 적합한 것으로 나타났다. 제시된 자전거 차두시간 분포모형의 적정성을 판단하기 위한 분석결과, 역시 동일하게 음지수분포와 전이된 음지수분포가 적합한 것으로 나타났다.

This study aims to develop time headway distribution models of bicycle traffic flow in a uninterrupted bikeway. The sample data were collected and classified into two groups of traffic volume levels. The lower level traffic volume is defined to be under 8 bicycles per minute, and the higher one is greater or equal to 8 bicycles per minute. The data aggregation interval size was set to be 0.5-second. Four distribution models including normal distribution, negative exponential distribution, shifted negative exponential distribution, and Pearson III distribution were tested, and Chi-square test results shows that the negative exponential distribution and the shifted negative exponential distribution are well fitted to the sample data. Another test results with different sample data also shows the same conclusion.

키워드

참고문헌

  1. Al-Ghamdi A. S.(2001), "Analysis of time headways on urban roads: case study from Riyadh," Journal of Transportation Engineering, vol. 127, no. 4, pp.289-294. https://doi.org/10.1061/(ASCE)0733-947X(2001)127:4(289)
  2. Dho C. U.(2004), Transportation Engineering, pp.67-68.
  3. Griffiths J. D. and Hunt J. G.(1991), "Vehicle headways in urban areas," Traffic Engineering and Control, vol. 32, no. 10, pp.458-462.
  4. Khasnabis S. and Heimbach C. L.(1980), "Headway-distribution models for two-lane rural highways," Transportation Research Record, 772, pp.44-51.
  5. Kim J. S. and Park C. H.(2006), "Freeway Design Capacity Estimation through the Analysis of Time Headway Distribution," Journal of the Korean Society of Civil Engineers D, vol. 26, no. 2D, pp.251-258.
  6. Minh C. C., Sano K. and Matsumoto S.(2005), "The speed, flow and headway analyses of motorcycle traffic," Journal of the Eastern Asia Society for Transportation Studies, vol. 6, pp.1496-1508.
  7. Ovuworie G. C., Darzentas J. and Mcdowell M. R. C.(1980), "Free movers, followers and others: a reconsideration of headway distribution," Traffic Engineering & Control, 21(HS-030 711).
  8. Pueboobpaphan R., Park D. J., Kim Y. C. and Choo S. H.(2013), "Time headway distribution of probe vehicles on single and multiple lane highways," KSCE Journal of Civil Engineering, vol. 17, no. 4, pp.824-836. https://doi.org/10.1007/s12205-013-0212-5
  9. Yin S., Li Z., Zhang Y., Yao D., Su Y. and Li L.(2009), " Headway distribution modeling with regard to traffic status," In Intelligent Vehicles Symposium, 2009 IEEE, pp.1057-1062.