DOI QR코드

DOI QR Code

세포 외 중성 단백질분해효소를 생산하는 Pichia anomala CO-1의 분리 동정 및 효소 특성

Isolation of the Protease-producing Yeast Pichia anomala CO-1 and Characterization of Its Extracellular Neutral Protease

  • 김지연 (인제대학교 리버럴아츠칼리지)
  • 투고 : 2019.08.16
  • 심사 : 2019.10.05
  • 발행 : 2019.10.30

초록

세포 외로 단백질분해효소를 생산하는 효모 균주 CO-1을 대나무 부산물에서 분리하였다. CO-1은 원형 또는 타원형($3.1-4.0{\times}3.8-4.4{\mu}m$)으로, 생장을 위한 최적 온도는 $30^{\circ}C$, 초기 pH는 4.0이었다. 그리고 최대 15.0% (w/v)의 NaCl과 9.0%(v/v)의 ethanol 농도에서 생장하였다. 형태적, 생리 생화학적 특성 및 18S rRNA 유전자 염기서열을 통한 계통분석을 이용하여 동정을 실시한 결과 Pichia anomala로 판명되었다. P. anomala CO-1 단백질분해효소를 부분 정제한 결과 수율은 7.2%였으며, 정제 전에 비해 약 14.6배 정제되었다. Zymogram으로 측정한 효소의 분자량은 약 30 kDa으로 확인되었다. 본 균주는 배지 중에 탄소원과 질소원, 무기염으로 1.0%(w/v) CMC와 1.0%(w/v) yeast extract, 0.3%(w/v) $MnSO_4$를 사용하였을 경우 가장 높은 단백질분해효소 활성을 나타내었다. P. anomala CO-1이 생산하는 단백질분해효소의 최적 활성 pH와 온도는 각각 7.0과 $30^{\circ}C$였다. 또한 본 효소는 pH 4.0-10.0에서 75%의 안정성을 나타내었으며, $65^{\circ}C$에서 1시간 가열하여도 60% 전후의 활성을 유지하였다. 균주의 효소 생산은 생육과 비례하였으며 대수증식기 후반에 최대의 효소 생산을 나타내었다.

From a sample of bamboo byproduct, the protease-producing yeast strain CO-1 was newly isolated. Strain CO-1 is spherical to ovoid in shape and measures $3.1-4.0{\times}3.8-4.4{\mu}m$. For the growth of strain CO-1, the optimal temperature and initial pH were $30^{\circ}C$ and 4.0, respectively. The strain was able to grow in 0.0-15.0%(w/v) NaCl and 0.0-9.0%(v/v) ethanol. Based on a phylogenetic analysis of its 18S rDNA sequences, strain CO-1 was identified as Pichia anomala. The extracellular protease produced by P. anomala CO-1 was partially purified by ammonium sulfate precipitation, which resulted in a 14.6-fold purification and a yield of 7.2%. The molecular mass of the protease was recorded as approximately 30 kDa via zymogram. The protease activity reached its maximum when 1.0%(w/v) CMC was used as the carbon source, 1.0%(w/v) yeast extract was used as the nitrogen source, and 0.3%(w/v) $MnSO_4$ was used as the mineral source. The protease revealed the highest activity at pH 7.0 and $30^{\circ}C$. This enzyme maintained more than 75% of its stability at a pH range of 4.0-10.0. After heating at $65^{\circ}C$ for 1 hr, the neutral protease registered at 60% of its original activity. The protease production coincided with growth and attained a maximal level during the post-exponential phase.

키워드

참고문헌

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Ali Amoozegar, M., Zahra Fatemi, A., Reza Karbalaei-Heidari, H. and Reza Razavi, M. 2006. Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiol. Res. 162, 369-377. https://doi.org/10.1016/j.micres.2006.02.007
  3. Barnett, J. A., Payne, R. W. and Yarrow, D. 2000. In Yeasts: Characteristics and identification, pp. 1-1139, 3rd ed., Cambridge University Press, Cambridge, UK.
  4. Bernal, C., Vidal, L., Valdivieso, E. and Coello, N. 2003. Keratinolytic activity of Kocuria rosea. World J. Microbiol. Biotechnol. 19, 255-261. https://doi.org/10.1023/A:1023685621215
  5. Buzzini, P. and Vaughan-Martini, A. 2006. Yeast biodiversity and biotechnology, pp. 533-59. In Rosa, C. A. and Peter, G. (eds.), Yeast: Biodiversity and Ecophysiology of Yeasts. Springer-Verlag, Berlin, Germany.
  6. Chi, Z. and Zhao, S. 2003. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme Microb. Technol. 33, 206-211. https://doi.org/10.1016/S0141-0229(03)00119-4
  7. Chi, Z., Ma, C., Wang, P. and Li, H. F. 2007. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour. Technol. 98, 534-538. https://doi.org/10.1016/j.biortech.2006.02.006
  8. de Araujo Viana, D., de Albuquerque Lima, C., Neves, R. P., Mota, C. S., Moreira, K. A., de Lima-Filho, J. L., Cavalcanti, M. T., Converti, A. and Porto, A. L. 2010. Production and stability of protease from Candida buinensis. Appl. Biochem. Biotechnol. 162, 830-842. https://doi.org/10.1007/s12010-009-8779-5
  9. Elad, Y. and Kapat, A. 1999. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 105, 177-189. https://doi.org/10.1023/A:1008753629207
  10. Fell, J. W., Boekhout, T., Fonseca, A., Scorzetti, G. and Statzell-Tallman, A. 2000. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. Evol. Microbiol. 50, 1351-1371. https://doi.org/10.1099/00207713-50-3-1351
  11. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  12. Fredlund, E., Druvefors, U., Boysen, M. E., Lingsten, K. J. and Schnurer, J. 2002. Physiological characteristics of the biocontrol yeast Pichia anomala J121. FEMS Yeast Res. 2, 395-402. https://doi.org/10.1016/S1567-1356(02)00098-3
  13. Gonzalez-Lopez, C. I., Szabo, R., Blanchin-Roland, S. and Gaillardin, C. 2002. Genetic control of extracellular protease synthesis in the yeast Yarrowia lipolytica. Genetics 160, 417-427. https://doi.org/10.1093/genetics/160.2.417
  14. Guyard, C., Evrard, P., Corbisier-Colson, A. M., Louvart, H., Dei-Cas, E., Menozzi, F. D., Polonelli, L. and Cailliez, J. 2001. Immuno-crossreactivity of an anti-Pichia anomala killer toxin monoclonal antibody with a Williopsis saturnus var. mrakii killer toxin. Med. Mycol. 39, 395-400. https://doi.org/10.1080/mmy.39.5.395.400
  15. Hagihara, B., Matsubara, H. I., Nakai, M. and Okunuki, K. 1958. Crystalline bacterial protease: I. Preparation of crystalline protease of Bacillus subtilis. J. Biochem. 45, 185-194. https://doi.org/10.1093/oxfordjournals.jbchem.a126856
  16. Joo, H. S., Ganesh Kumar, C., Park, G. C., Kim, K. T., Paik, S. R. and Chang, C. S. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38, 155-159. https://doi.org/10.1016/S0032-9592(02)00061-4
  17. Karbalaei-Heidari, H. R., Ziaee, A. A., Schaller, J. and Amoozegar, M. A. 2007. Purification and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium, Salinivibrio sp. strain AF-2004. Enzyme Microb. Technol. 40, 266-272. https://doi.org/10.1016/j.enzmictec.2006.04.006
  18. Kim, J. Y. 2009. Isolation of Sporidiobolus ruineniae CO-3 and characterization of its extracellular protease. J. Kor. Soc. Appl. Biol. Chem. 52, 1-10. https://doi.org/10.3839/jksabc.2009.001
  19. Kim, J. Y. 2010. Isolation of protease-producing yeast, Pichia farinosa CO-2 and characterization of its extracellular enzyme. J. Kor. Soc. Appl. Biol. Chem. 53, 133-141. https://doi.org/10.3839/jksabc.2010.023
  20. Kurmar, C. G. and Tagaki, H. 1999. Microbial alkaline protease: from bioindustrial viewpoint. Biotechnol. Adv. 17, 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  21. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  22. Laxman, R. S., Sonawane, A. P., More, S. V., Seetarama Rao, B., Rele, M. V., Jogdand, V. V., Deshpande, V. V. and Rao, M. B. 2005. Optimization and scale up of production of alkaline protease from Conidiobolus coronatus. Process Biochem. 40, 3152-3158. https://doi.org/10.1016/j.procbio.2005.04.005
  23. Lowry, O. H., Rosebrough, N., Farr, A. L. and Rondall, R. L. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-273. https://doi.org/10.1016/S0021-9258(19)52451-6
  24. Ma, C., Ni, X., Chi, Z., Ma, L. and Gao, L. 2007. Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Mar. Biotechnol. 9, 343-351. https://doi.org/10.1007/s10126-006-6105-6
  25. Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357-358.
  26. Rao, M. B., Tanksale, A. M., Ghatge, M. S. and Deshpande, V. V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635. https://doi.org/10.1128/MMBR.62.3.597-635.1998
  27. Rao, S., Mizutani, O., Hirano, T., Masaki, K. and Iefuji, H. 2011. Purification and characterization of a novel aspartic protease from basidiomycetous yeast Cryptococcus sp. S-2. J. Biosci. Bioeng. 112, 441-446. https://doi.org/10.1016/j.jbiosc.2011.07.013
  28. Ray, M. K., Devi, K. U., Kumar, G. S. and Shivaji, S. 1992. Extracellular protease from the antarctic yeast Candida humicola. Appl. Environ. Microbiol. 58, 1918-1923. https://doi.org/10.1128/AEM.58.6.1918-1923.1992
  29. Sandhya, C., Sumantha, A., Szakacs, G. and Pandey, A. 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40, 2689-2694. https://doi.org/10.1016/j.procbio.2004.12.001
  30. Strauss, M. L. A., Jolly, N. P., Lambrechts, M. G. and van Resemburg, P. 2001. Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J. Appl. Microbiol. 91, 182-190. https://doi.org/10.1046/j.1365-2672.2001.01379.x
  31. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882.
  32. Walker, G. M. 2011. Pichia anomala: cell physiology and biotechnology relative to other yeasts. Antonie Van Leeuwenhoek 99, 25-34. https://doi.org/10.1007/s10482-010-9491-8
  33. Wang, L. and Wang, Y. J. 2001. Comparison of protease digestion at neutral pH with alkaline steeping method for rice starch isolation. Cereal Chem. 78, 690-692. https://doi.org/10.1094/CCHEM.2001.78.6.690
  34. White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-22. In: Innis, M. A., Gelfand, D. H., Snissky, J. J. and White, T. J. (eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press Inc., NY, USA.