DOI QR코드

DOI QR Code

Bacillus Subtilis KJ-3를 이용한 생물전환물 및 그 혼합물의 생리활성

Physiological Activities of Bioconversion Products Using Bacillus Subtillis KJ-3 and Their Mixtures

  • 투고 : 2019.08.28
  • 심사 : 2019.10.16
  • 발행 : 2019.10.30

초록

이 연구는 Red allium cepa (RA), Cucurbita moschata Duch (CM), and Angelica gigas Nakai (AG)의 혼합물을 이용한 새로운 기능성 물질을 개발하기 위해 수행되었다. RA와 CM은 수분 함량이 높아 저장 안정성이 매우 낮다. 따라서 각 재료들의 주요성분들을 추출하여 함량 분석 후 연구에 사용하였다. RA는 에탄올 추출 후 Bacilus subillis KJ-3 (BS3)에 의해 생물전환하였다. 생물전환 후, RA의 Quercetin 함량은 128.9% 증가되었음을 확인하였다. CM의 에탄올 추출물에서는 ${\beta}$-카로틴을 검출하였고 함량은 0.2 mg/g으로 낮았다. AG 에탄올 추출물(1 mg)의 데커신 및 데커시놀 엔젤레이트(D/DA)는 각각 0.4146 mg과 0.3659 mg을 함유했다. D/DA의 순도는 약 78%로 나타났다. 이들 각각의 물질 및 혼합물(혼합물 1 (RA:CM:AG = 5:2:3), 혼합물 2 (RA:CM: AG = 3:5:2), 혼합물 3 (RA:CM:AG = 3:2:5)의 총 플라보노이드 함량과 폴리페놀 함량을 측정하였다. 세포 생존율, 항염증 활성, 항산화 능력 또한 평가하였다. 모든 결과를 종합하여 볼 때, 혼합물 3 (RA:CM:AG=3:2:5)의 항산화 작용이 가장 효과적이었다. 따라서 이러한 연구 결과는 향후 RA, CM, AG의 3:2:5 혼합물을 이용한 식품개발을 위한 기초자료로 활용하고자 한다.

This research was performed to develop a new material consisting of a mixture of Red Allium cepa (RA) Cucurbita moschata duch (CM), and Angelica gigas Nakai (AG). RA and CM have low storage stability because of their high moisture content. Therefore, their major components were extracted and used for the research after a content analysis. In order to overcome these limitations, the quercetin from RA, ${\beta}-carotene$ from CM, and decursin/decursinol angelate (D/DA) from AG were separately extracted, and the biochemical activity of each extract and mixture was compared. RA was bioconverted by the Bacillus subtillis KJ-3 (BS3) after ethanol extraction. After bioconversion, the quercetin content of RA was increased by 128.9%. ${\beta}-carotene$ was detected in the CM ethanol extract and its content was very low concentrations at 0.2 mg/g. The AG ethanol extract (1 mg) contained 0.4146 mg and 0.3659 mg of D/DA, respectively. The purity of the D/DA was found to be about 78%. The flavonoid and polyphenol content of each extract and their mixtures (mixture 1 (RA:CM:AG = 5:2:3), mixture 2 (RA:CM: AG = 3:5:2), and mixture 3 (RA:CM:AG = 3:2:5)) were measured. In addition, the cell survival rate, anti-inflammatory activity, and antioxidant ability were also evaluated. In all the results, the antioxidant activity of mixture 3 was most effective. Therefore, these findings provide basic data for future food development using a 3:2:5 mixture of RA, CM, and AG.

키워드

참고문헌

  1. Ahn, K. S., Sim, W. S. and Kim, I. H. 1996. Decursin: a cytotoxic agent and protein kinase C activator from the root of Angelica gigas. Planta. Med. 62, 7-9. https://doi.org/10.1055/s-2006-957785
  2. Ahn, M. J., Lee, M. K., Kim, Y. C. and Sung, S. H. 2008. The simultaneous determination of coumarines in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharmaceut. Biomed. 46, 258-266. https://doi.org/10.1016/j.jpba.2007.09.020
  3. An, B. J., Lee, J. T., Kwak, J. H., Park, J. M., Lee, J. Y. and Park, T. S. 2004. Physiologocal activities of pumpkin (Cucurbita moschata Duch) extract. Kor. J. Herbology 19, 1-7.
  4. An, S. J. and Kim, M. K. 2001. Effect of dry powders, ethanol extracts and juices of radish and onion on lipid metabolism and antioxidative capacity in rats. J. Nutr. Health. 50, 313-324. https://doi.org/10.4163/jnh.2017.50.4.313
  5. Bae, E. A., Han, M. J., Kim, N. J. and Kim, D. H. 1998. Anti-Helicobacter pylori activity of herbal medicines. Biol. Pharm. Bull. 21, 990-992. https://doi.org/10.1248/bpb.21.990
  6. Bakhsh, R. and Khan, S. 1990. Influence of onion (Allium cepa) and chaunga (Caraluma tubercula) on serum cholesterol, triglycerides, total lipids in human subject. Sarhad. J. Agric. 6, 425-428.
  7. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1200. https://doi.org/10.1038/1811199a0
  8. Chung, M. J., Walker, P. A., Brown, R. W. and Hogstrand, C. 2005. Zinc-mediated gene expression offers protection against H2O2-induced cytotoxicity. Toxicol. Appl. Pharmacol. 205, 225-236. https://doi.org/10.1016/j.taap.2004.10.008
  9. Davies, F. and Maloney, A. J. 1976. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 2, 1403. https://doi.org/10.1016/S0140-6736(76)91936-X
  10. Davis, W. B. 1947. Determination of flavonones in citrus fruits. Anal. Chem. 19, 476-478. https://doi.org/10.1021/ac60007a016
  11. Folin, A. D. and Denis, W. 1915. A colorimetric method for the determination of phenols (and phenolderivatives) in urine. J. Biol. Chem. 22, 305-308. https://doi.org/10.1016/S0021-9258(18)87648-7
  12. Granger, D. L., Taintor, R. R., Boockvar, K. S. and Hibbs, J. J. 1996. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol. 268, 142-151. https://doi.org/10.1016/S0076-6879(96)68016-1
  13. Heo, J. S., Cha, J. Y., Kim, H. W., Ahn, H. Y., Eom, K. E., Heo, S. J. and Cho, Y. S. 2010. Bioactive materials and biological activity in the extracts of leaf, stem mixture and root from Angelica gigas Nakai. J. Life Sci. 20, 750-759. https://doi.org/10.5352/JLS.2010.20.5.750
  14. Hermann, K. 1976. Flavonoids and flavones in food plants: a review. J. Food Tech. 11, 433-488. https://doi.org/10.1111/j.1365-2621.1976.tb00743.x
  15. Ippouchi, K., Itou, H., Azuma, K. and Higashio, H. 2002. Effect of naturally occurring organosulfur compounds on nitric oxide production in lipopolysaccharide-activated macrophages. Life Sci. 71, 411-419. https://doi.org/10.1016/S0024-3205(02)01685-5
  16. Kang, S. Y., Lee, K. Y., Sung, S. H., Park, M. J. and Kim, Y. C. 2001. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase structure-activity relationships. J. Nat. Prod. 64, 683-685. https://doi.org/10.1021/np000441w
  17. Kang, Y. H., Cha, H. S., Kim, H. M. and Park, Y. K. 1997. The nitrite scavenging and electron donating ability of pumpkin extract. Kor. J. Food Nutr. 10, 31-36.
  18. Kendler, B. S. 1987. Garlic (Allium sativum) and onion (Allium cepa): a review of their relationship to cardiovascular disease. Prev. Med. 16, 670-685. https://doi.org/10.1016/0091-7435(87)90050-8
  19. Kim, K. M., Jung, J. Y., Hwang, S. W., Kim, M. J. and Kang, J. S. 2009. Isolation and Purification of decursin and decursinol Angelate in Angelica gigas Nakai. J. Kor. Sci. Nutr. 38, 653-656. https://doi.org/10.3746/jkfn.2009.38.5.653
  20. Kim, M. J., Hong, C. O., Nam, M. H. and Lee, K. W. 2011. Antioxidant effects and physiological activities of pumpkin (Cucurbita moschata Duch.) extract from different aerial parts. Kor. J. Food Sci. Tech. 43, 195-199. https://doi.org/10.9721/KJFST.2011.43.2.195
  21. Kim, S. K. and Kim, M. K. 2004. Effect of dried powders or ethanol extracts of onion flesh and peel on lipid metabolism, antioxidative and antithrombogenic capacities in 16-month- old rats. Kor. J. Nutr. 37, 623-632.
  22. Kim, S. O. and Lee, M. Y. 2001. Effects of ethylacetate fraction of onion on lipid metabolism in high cholesterol-fed rats. J. Kor. Soc. Food Sci. Nutr. 30, 673-678.
  23. Marcocci, L., Maguire, J. J. and Packer, L. 1994. Nitecapone: a nitric oxide radical scavenger. Biochem. Mol. Biol. Int. 34, 531-541.
  24. Lee, B., Jung, J. H. and Kim, H. S. 2012. Assessment of red onion on antioxidant activity in rat. Food Chem. Toxicol. 50, 3912-3919. https://doi.org/10.1016/j.fct.2012.08.004
  25. Lee, B. K., Lee, D. S., Ha, S. Y., Park, S. W. and Jung, Y. S. 2014. Anti-platelet effects of mixtures of onion and aloe extract. YakhakHoeji 58, 322-327.
  26. Lee, H. J., Do, J. R., Kwon, J. H. and Kim, H. K. 2010. Physiological activities of Cucurbita moschata Duch. extracts with different extraction conditions. J. Kor. Soc. Food Sci. Nutr. 39, 165-171. https://doi.org/10.3746/jkfn.2010.39.2.165
  27. Lee, H. J., Lee, K. H., Park, E. J. and Jung, H. K. 2010. Effect of onion extracts on serum cholesterol in borderline hypercholesterolemic participants. J. Kor. Soc. Food Sci. Nutr. 39, 1783-1789. https://doi.org/10.3746/jkfn.2010.39.12.1783
  28. Lee, L. S., Choi, E. J., Kim, C. H., Kim, Y. B., Kum, J. S. and Park, J. D. 2014. Quality characteristics and antioxidant properties of black and yellow soybeans. Kor. J. Food Sci. Technol. 46, 757-761. https://doi.org/10.9721/KJFST.2014.46.6.757
  29. Lee, S. H., Lee, Y. S., Jung, S. H., Shin, K. H., Kim, B. K. and Kang, S. S. 2003. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch. Pharm. Res. 26, 727-730. https://doi.org/10.1007/BF02976682
  30. Lee, S. H., Shin, D. S., Kim, J. S., Oh, K. B. and Kang, S. S. 2003. Antibacterial courmins from Angelica gigas roots. Arch. Pharm. Res. 26, 449-452. https://doi.org/10.1007/BF02976860
  31. Lee, Y. H. and Lim, E. M. 2013. Anti-inflammatory effect of Ligustri lucidi fructus water extract in RAW 264.7 cells by LPS. J. Kor. Obstet. Gynecol. 26, 66-81.
  32. Lee, Y. R., Hwang, I. G., Woo, K. S., Kim, D. J., Hong, J. T. and Jeong, H. S. 2007. Antioxidative activities of the ethyl acetate fraction from heated onion (Allium cepa). Food Sci. Biotechnol. 16, 1041-1045.
  33. Leighton, T., Ginther, C., Fluss, L., Harter, W. K., Cansado, J. and Nortario, V. 1991. Molecular characterization of quercetin and quercetin glycosides in allium vegetables. In Phenolic Compounds in Food and Their Effects on Health II. ACS, Washington, DC, USA. 220.
  34. Li, L., Li, W., Jung, S. W., Lee, Y. W. and Kim, Y. H. 2011. Protective effects of decursin and decursinol angelate against amyloid ${\beta}$-protein-induced oxidative stress in the PC12 cell line: The role of Nrf2 and antioxidant enzymes. Biosci. Biotechnol. Biochem. 75, 434-442. https://doi.org/10.1271/bbb.100606
  35. Lu, X. L., Zhao, C. H., Yao, X. L. and Zhang, H. 2017. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROSregulated PI3K/AKT signaling pathway. Biomed. Pharmacother. 85, 658-671. https://doi.org/10.1016/j.biopha.2016.11.077
  36. Moon, J. S., Kim, H. D., Ha, I. J., Lee, S. Y., Lee, J. T. and Lee, S. D. 2010. Chemical component of red onion (Allium cepa L.) according to cultivars and growing areas. Kor. J. Hort. Sci. Technol. 28, 921-927.
  37. Park, G. Y., Li, H. S., Hwang, I. D. and Cheong, H. S. 2006. The functional effects of fermented pine needle extract. Kor. J. Biotechnol. Bioeng. 21, 378-383.
  38. Park, Y. M., Wom, J. H., Yun, K. J., Ryu, J. H., Han, Y. N., Choi, S. K. and Lee, K. T. 2006. Preventive effect of Gingko biloba extract (GBB) on the lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 via suppression nuclear factor-${\kappa}B$ in RAW 264.7 cells. Biol. Pharm. Bull. 29, 985-990. https://doi.org/10.1248/bpb.29.985
  39. Rha, Y. A., Choi, M. S. and Park, S. J. 2014. Antioxidant and anti-adipogenic effects of fermented Rhus verniciflua. Kor. J. Culinary. Res. 20, 137-147.
  40. Rice-Evans, C., Miller, N. and Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  41. Ryu, K. S. and Yook, C. S. 1967. Studies on the coumarins of the root of angelica gigas Nakai. Yakhakhoeji 11, 22-26.
  42. Shon, M. Y., Choi, S. D., Kahng, G. G., Nam, S. H. and Sung, N. J. 2004. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem. Toxicol. 42, 659-666. https://doi.org/10.1016/j.fct.2003.12.002
  43. Yoon, S. B., Han, H. S. and Lee, Y. J. 2011. Effect of Scutellariae radix extract on the proinflammatory mediators in RAW 264.7 cells induced by LPS. Kor. J. Herbol. 26, 75-81.
  44. Yim, D. S., Singh, R. P., Agarwal, C., Lee, S. Y. and Chi, H. J. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res. 65, 1035-1044.