DOI QR코드

DOI QR Code

Regulation of Anthocyanin Biosynthesis by Light and Nitrogen in Sarracenia purpurea

Sarracenia purpurea에서 빛 및 질소 의존성 anthocyanin 생합성

  • Yoon, Joon Sup (Department of Biological Sciences, College of Natural Sciences, Kongju National University) ;
  • Lee, Seung hi (Department of Biological Sciences, College of Natural Sciences, Kongju National University) ;
  • Riu, Young Sun (Department of Biological Sciences, College of Natural Sciences, Kongju National University) ;
  • Kong, Sam-Geun (Department of Biological Sciences, College of Natural Sciences, Kongju National University)
  • 윤준섭 (국립공주대학교 자연과학대학 생명과학과) ;
  • 이승희 (국립공주대학교 자연과학대학 생명과학과) ;
  • 유영선 (국립공주대학교 자연과학대학 생명과학과) ;
  • 공삼근 (국립공주대학교 자연과학대학 생명과학과)
  • Received : 2019.07.29
  • Accepted : 2019.10.20
  • Published : 2019.10.30

Abstract

Sarracenia purpurea as a carnivorous plant in the family Sarraceniaceae is known to require strong light for its growth and to absorb nutrients from the decomposed molecules of insects that are attracted by color, sweet juice, and the like. S. purpurea grew greenish in whole body under weak light conditions, while the whole of the insectivorous sac including leaves, is changed to dark red under strong light conditions. The phenomenon of reddish S. purpurea is thought to be related to the flavonoid pigment anthocyanin. Interestingly, the color change was not observed when S. purpurea was grown in a growth condition with abundant nitrogen fertilizer. The expression levels of anthocyanin contents and biosynthesis-related genes were strongly correlated with light intensity and nitrogen fertilizer. The anthocyanin content in the strong light condition ($240{\mu}mol\;m^{-2}s^{-1}$) was 6.15 times higher than that in the weak light ($40{\mu}mol\;m^{-2}s^{-1}$). In contrast, the anthocyanin contents were not significantly changed when 0.8% urea solution was supplied as nitrogen fertilizer. Consistently, CHALCONE SYNTHASE (CHS) gene was up-regulated by strong light and down-regulated by nitrogen fertilizer. These results suggest that the environmental changes of light and nitrogen in soil regulate the anthocyanin content in S. purpurea.

식충식물(carnivorous plant)인 Sarracenia purpurea는 생육에 있어 매우 높은 수준의 광량을 필요로 하며 색, 과즙 등으로 벌레를 유인하여 영양분을 흡수하는 것으로 알려져 있다. S. purpurea는 약한 빛 조건에서 녹색을 띄었으며 강한 빛 조건에서는 잎을 포함한 포충낭 전체가 검붉은 색으로 변화하였다. 이와 같은 색의 변화는 질소비료를 첨가하였을 때에 관찰되지 않았다. S. purpurea를 붉게 물들이는 색소는 안토시아닌(anthocyanin)인 것으로 보고된 바가 있다. 본 연구에서는 빛의 세기와 질소 첨가에 따른 안토시아닌의 함량과 생합성 관련 유전자의 발현 특성을 분석하였다. $240{\mu}mol\;m^{-2}s^{-1}$의 강한 빛 조건에서의 안토시아닌 함량은 $40{\mu}mol\;m^{-2}s^{-1}$의 약한 빛에서 보다 6.15배 높았으며, 0.8% 요소 비료로 질소를 첨가하였을 때에는 약한 빛 조건과 큰 차이가 없었다. 안토시아닌의 초기 생합성 과정에 관여하는 CHALCONE SYNTHASE (CHS) 유전자는 강한 빛에서 발현이 증가하였고 질소 양분을 첨가하였을 때에 감소하였다. 이상의 결과는 빛과 토양의 환경 변화가 S. purpurea의 안토시아닌의 함량을 조절한다는 것을 보여주고 있다.

Keywords

References

  1. Bekesiova, I., Nap, J. P. and Mlynarova, L. 1999. Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol. Biol. Rep. 17, 269-277 https://doi.org/10.1023/A:1007627509824
  2. Bott, T., Meyer, G. A. and Young, E. B. 2008. Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. New Phytol. 180, 631-641. https://doi.org/10.1111/j.1469-8137.2008.02575.x
  3. Chapin, C. T. and John, P. 1995. Nutrient limitations in the northern pitcher plant Sarracenia purpurea. Can. J. Bot. 73, 728-734. https://doi.org/10.1139/b95-079
  4. Crosby, K. C., Pietraszewska-Bogiel, A., Gadella, T. W. and Winkel, B. S. 2011. Forster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes. FEBS Lett. 585, 2193-2198. https://doi.org/10.1016/j.febslet.2011.05.066
  5. Fukushima, K., Fang, X., Alvarez-Ponce, D., Cai, H., Carretero-Paulet, L., Chen, C., Chang, T. H., Farr, K. M., Fujita, T. and Hiwatashi, Y., et al. 2017. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 1, 59. https://doi.org/10.1038/s41559-016-0059
  6. Gould, K. S. and Quinn, B. D. 1999. Do anthocyanins protect leaves of New Zealand native species from UV-B? N. Z. J. Bot. 37, 175-178. https://doi.org/10.1080/0028825X.1999.10512176
  7. Hosseinian, F. S., Li, W. and Beta, T. 2008. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 109, 916-924. https://doi.org/10.1016/j.foodchem.2007.12.083
  8. He, F., Mu, L., Yan, G., Liang, N., Pan, Q., Wang, J., Reeves, M. and Duan, C. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15, 9057-9091. https://doi.org/10.3390/molecules15129057
  9. Lee, D. W. and Gould, K. S. 2002. Why leaves turn red: pigments called anthocyanins probably protect leaves from light damage by direct shielding and by scavenging free radicals. Am. Sci. 90, 524-531. https://doi.org/10.1511/2002.39.794
  10. Luo, J., Wang, X., Feng, L., Li, Y. and He, J. 2017. The mitogen-activated protein kinase kinase 9 (MKK9) modulates nitrogen acquisition and anthocyanin accumulation under nitrogen-limiting condition in Arabidopsis. Biochem. Biophys. Res. Commun. 487, 539-544. https://doi.org/10.1016/j.bbrc.2017.04.065
  11. Rubin, G., Tohge, T., Matsuda, F., Saito, K. and Scheible, W. R. 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21, 3567-3584. https://doi.org/10.1105/tpc.109.067041
  12. Schmelzer, E., Jahnen, W. and Hahlbrock, K. 1988. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc. Natl. Acad. Sci. USA. 85, 2989-2993. https://doi.org/10.1073/pnas.85.9.2989
  13. Sheridan, P. M. and Mills, R. R. 1998. Presence of proanthocyanidins in mutant green Sarracenia indicate blockage in late anthocyanin biosynthesis between leucocyanidin and pseudobase. Plant Sci. 135, 11-16. https://doi.org/10.1016/S0168-9452(98)00065-X
  14. Soubeyrand, E., Basteau, C., Hilbert, G., van Leeuwen, C., Delrot, S. and Gemes, E. 2014. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103, 38-49. https://doi.org/10.1016/j.phytochem.2014.03.024
  15. Wrolstad, R. E., Durst, R. W. and Lee, J. 2005. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 16, 423-428. https://doi.org/10.1016/j.tifs.2005.03.019