References
- M. M. Lino, C. S. Paulo, A. C. Vale, M. F. Vaz & L S. Ferreira. (2013). Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dental Materials, 29(10), :e252-e62. DOI : 10.1016/j.dental.2013.07.023
- J. Wen, F. Jiang, C. K. Yeh & Y. Sun. (2016). Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids and Surfaces B: Biointerfaces, 140, 19-27. DOI: 10.1016/j.colsurfb.2015.12.028
- W. Wang, S. Liao, Y. Zhu, M. Liu, Q. Zhao & Y. Fu. (2015). Recent applications of nanomaterials in prosthodontics. Journal of Nanomaterials, 2015, 3. DOI.; 10.1155/2015/408643
- G. C. Padovani et al. (2015). Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends in biotechnology, 33(11), 621-36. DOI: 10.1016/j.tibtech.2015.09.005
- J. S. Kim et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine. Nanotechnology, Biology and Medicine, 3(1), 95-101. DOI: 10.1016/j.nano.2006.12.001
- L. S. Acosta-Torres, I. Mendieta, R. E. Nunez-Anita, M. Cajero-Juarez & V. M. Castano. (2012). Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. International journal of nanomedicine, 7, 4777-86. DOI: 10.2147/IJN.S32391
- D, T. De Castro et al. (2016). In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. The Journal of prosthetic dentistry, 115(2), 238-246. DOI: 10.4103/JCD.JCD_266_17
- J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan & H. Han. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 6(3), 1879-89. DOI: 10.1039/c3nr04941
- H. Chen et al. (2013). Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 9(16), 2735-46 DOI: 10.1002/smll.201202792
- S. Morimune, T. Nishino & T. Goto. (2012). Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites. ACS applied materials & interfaces, 4(7), :3596-3601. DOI: 10.1021/am3006687
- R. K. Singh et al. (2014). Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS applied materials & interfaces, 6(4), 2201-2208. DOI: 10.1021/am4056936
- R. K. Singh, G. Z. Jin, C. Mahapatra, K. D. Patel, W. Chrzanowski, H. W. Kim. (2015). Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. ACS Appl Mater Interfaces. 7(15), 8088-8098. DOI: 10.1021/acsami.5b00692
- S. J. Strydom, W. E. Rose, D. P. Otto, W. Liebenberg & M. M. de Villiers. (2013). Poly (amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomedicine: nanotechnology, biology and medicine, 9(1), 85-93. DOI: 10.1016/j.nano.2012.03.006
- W. Stober, A. Fink & E. Bohn. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 26(1), 62-69. DOI: 10.1016/0021-9797(68)90272-5
- O. Yamamoto. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3(7), 643-646. DOI:10.1016/S1466-6049(01)00197-0
- J. H. Lee, J. S. Kwon, J. Y. Om, H. Y. Kim, E. H. Choi, K. M. Kim & K. N. Kim. (2014). Cell immobilizaion on poly by air atmospheric pressure plasma jet treatment. Jpn J Phys. 53:086202. https://ir.ymlib.yonsei.ac.kr>bitstreamT201405815 https://doi.org/10.7567/JJAP.53.086202
- H. H. Lee, C. J. Lee & K. Asaoka. (2012). Correlation in the mechanical properties of acrylic denture base resins. Dental materials journal, 31(1), 157-164. DOI: 10.4012/dmj.2011-205
- S. Redding, B. Bhatt, H. R. Rawls, G. Siegel, K. Scott & J. Lopez-Ribot. (2009). Inhibition of Candida albicans biofilm formation on denture material. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 107(5):669-72. DOI: 10.1016/j.tripleo.2009.01.021
- J. H. Jorge, E. T. Giampaolo, C. E. Vergani, A. L. Machado, A. C. Pavarina, I. Z. Carlos. (2006). Effct of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. Journal of Applied Oral Science, 14(3), 203-207. DOI: 10.1590/S1678-77572006000300011
- R. Augustine et al. (2014). Electrospun polycaprolactone/ZnO nanocompositemembranes as biomaterials with antibacterial and cell adhesionproperties. Journal of Polymer Research, 21(3), 347. DOI: 10.1007/s10965-013-0347-6
- T. Notomi et al. (2015). Zinc-Induced Effects on Osteoclastogenesis InvolvesActivation of Hyperpolarization -Activated Cyclic Nucleotide ModulatedChannels via Changes in Membrane Potential. J BONE MINER RES, 30(9):1618-1626. DOI: 10.1002/jbmr.2507
- N. Jones et al. (2008) Antibacterial activity of ZnO nanoparticle suspensions ona broad spectrum of microorganisms. FEMS microbiology letters, 79(1), 71-76. DOI: 10.1111/j.1574-6968.2007.01012
- J. Sawai et al. (1998). Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of fermentation and bioengineering, 86(5), 521-522. DOI 10.1007/s13762-013-0474
- J. Sawai & T. Yoshikawa. (2004). Quantitative evaluation of antifungal activityof metallic oxide powders (MgO, CaO and ZnO) by an indirectconductimetric assay. Journal of applied microbiology, 96(4), 803-809. DOI: 10.1111/j.1365-2672.2004.02234
- P. K. Stoimenov et al. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679-6686. DOI: 10.1021/la0202374
- Xie Y et al. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 77(7), 2325-2331. DOI: 10.1128/AEM.02149-10
- Zhang L et al. (2007) Investigation into the antibacterial behaviour ofsuspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9(3), 479-489. DOI: 10.1007/s11051-006-9150-1
- S. Anitha et al. (2012). Optical, bactericidal and water repellent properties ofelectrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydrate Polymers, 87(2), 1065-1072. DOI: 10.1016/j.carbpol.2011.08.030
- S. Kasraei et al. (2014). Antibacterial properties of composite resinsincorporating silver and zinc oxide nanoparticles on Streptococcusmutans and Lactobacillus. Restorative dentistry & endodontics, 39(2), 109-114. DOI: 10.5395/rde.2014.39.2.109
- K. Shalumon et al. (2011). Sodium alginate/poly (vinyl alcohol)/nano ZnOcomposite nanofibers for antibacterial wound dressings. International journal of biological macromolecules, 49(3), 247-254. DOI: 10.1016/j.ijbiomac.2011.04.005
- T. Amna et al. (2013). Zinc oxide-doped poly (urethane) spider web nanofibrousscaffold via one-step electrospinning: a novel matrix for tissueengineering. Applied microbiology and biotechnology, 97(4), 1725-1734. DOI: 10.1007/s00253-012-4353-0
- R. Augustine et al. (2014). Electrospun polycaprolactone membranesincorporated with ZnO nanoparticles as skin substitutes with enhancedfibroblast proliferation and wound healing. RSC Advances,4(47), 24777-24785. DOI: 2014.4(47):24777-24785.10.1039/C4RA02450H
- R Augustine et al. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 21(3), 347. https://books.google.co.kr https://doi.org/10.1007/s10965-013-0347-6
- C. R. Srurz et al. (2015). Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dental materials journal, 34(6), 796-813. DOI: 10.4012/dmj.2014-098