DOI QR코드

DOI QR Code

Genetic Basis of Steroid Resistant Nephrotic Syndrome

  • Park, Eujin (Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital)
  • Received : 2019.09.08
  • Accepted : 2019.09.24
  • Published : 2019.10.31

Abstract

Steroid-resistant nephrotic syndrome (SRNS) has long been a challenge for clinicians due to its poor responsiveness to immunosuppressants, and rapid progression to end-stage renal disease. Identifying a monogenic cause for SRNS may lead to a better understanding of podocyte structure and function in the glomerular filtration barrier. This review focuses on genes associated with slit diaphragm, actin cytoskeleton, transcription factors, nucleus, glomerular basement membrane, mitochondria, and other proteins that affect podocyte biology.

Keywords

References

  1. Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children. Lancet 2018;392:61-74. https://doi.org/10.1016/S0140-6736(18)30536-1
  2. Kang HG, Cheong HI. Nephrotic syndrome: what's new, what's hot? Korean J Pediatr 2015;58:275-82. https://doi.org/10.3345/kjp.2015.58.8.275
  3. Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12:133-46. https://doi.org/10.1038/nrneph.2015.205
  4. Preston R, Stuart HM, Lenon R. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol 2019;34:195-210. https://doi.org/10.1007/s00467-017-3838-6
  5. Trautmann A. Bodria M, Ozaltin F, Gheisari A, Nelk A, Azocar M, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol 2015;10:592-600. https://doi.org/10.2215/CJN.06260614
  6. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015;26:1279-89. https://doi.org/10.1681/ASN.2014050489
  7. Warejko JK, Tan W, Daga A, Schapiro D, Lawson JA, Shril S, et al. Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 2018;13:53-62. https://doi.org/10.2215/CJN.04120417
  8. Marshall CB, Shankland SJ. Cell cycle regulatory proteins in podocyte health and disease. Nephron Exp Nephrol 2007;106:e51-9. https://doi.org/10.1159/000101793
  9. Grahammer F, Schell C, Huber TB. The podocyte slit diaphragmfrom a thin grey line to a complex signalling hub. Nat Rev Nephrol 2013;9:587-98. https://doi.org/10.1038/nrneph.2013.169
  10. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell 1998;1:575-82. https://doi.org/10.1016/S1097-2765(00)80057-X
  11. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber, A et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000;24:349-54. https://doi.org/10.1038/74166
  12. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nurnberg G, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 2006;38:1397-405. https://doi.org/10.1038/ng1918
  13. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005;308:1801-4. https://doi.org/10.1126/science.1106215
  14. Lowik MM, Groenen PJ, Pronk I, Lilien MR, Goldschmeding R, Dijkman HB, et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int 2007;72:1198-203. https://doi.org/10.1038/sj.ki.5002469
  15. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P, et al. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trend Cell Biol. 2007;17:428-37. https://doi.org/10.1016/j.tcb.2007.06.006
  16. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, et al. Mutations in ACTN4, encoding alphaactinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 2000;24:251-6. https://doi.org/10.1038/73456
  17. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 2008;40:1175-84. https://doi.org/10.1038/ng.226
  18. Boyer O, Benoit G, Gribouval O, Nevo F, Tete MJ, Dantal J, et al. Mutations inINF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 2011;22239-45.
  19. Akilesh S, Suleiman H, Yu H, Stander MC, Lavin P, Gbadegesin R, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest 2011;121:4127-37. https://doi.org/10.1172/JCI46458
  20. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 2013;123:3243-53. https://doi.org/10.1172/JCI69134
  21. Gee HY, Zhang F, Ashraf S, Kohl S, Sadowski CE, Vega-Warner V, et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 2015;125:2375-84. https://doi.org/10.1172/JCI79504
  22. Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17:467-70. https://doi.org/10.1038/ng1297-467
  23. Pelletier J, Bruening W, Kashtan CE, Mauer SM, Manivel JC, Striegel JE, et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991;67:437-47. https://doi.org/10.1016/0092-8674(91)90194-4
  24. Lee JH, Han KH, Lee H, Kang HG, Moon KC, Shin JI, et al. Genetic basis of congenital and infantile nephrotic syndromes. Am J Kidney Dis 2011;58:1042-3. https://doi.org/10.1053/j.ajkd.2011.09.007
  25. Kerti A, Csohany R, Wagner L, Javorszky E, Maka E, Tory K. NPHS2 homozygous p.R229Q variant: potential modifier instead of causal effect in focal segmental glomerulosclerosis. Pediatr Nephrol 2013;28:2061-4. https://doi.org/10.1007/s00467-013-2542-4
  26. Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in Nail Patella syndrome. Nat Genet 1998;19:47-50. https://doi.org/10.1038/ng0598-47
  27. Miyake N, Tsukaguchi H, Koshimizu E, Shono A, Matsunaga S, Shiina M, et al. Biallelic Mutations in Nuclear Pore Complex Subunit NUP107 Cause Early-Childhood-Onset Steroid-Resistant Nephrotic Syndrome. Am J Hum Genet 2015;97:555-66. https://doi.org/10.1016/j.ajhg.2015.08.013
  28. Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet 2016;48:457-65. https://doi.org/10.1038/ng.3512
  29. Zhao F, Zhu JY, Richman A, Fu Y, Huang W, Chen Y, et al. Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome. J Am Soc Nephrol 2019;30:840-53. https://doi.org/10.1681/ASN.2018080786
  30. Jeffrey HM. The glomerular basement membrane. Exp Cell Res 2012;318:973-8. https://doi.org/10.1016/j.yexcr.2012.02.031
  31. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004;13:2625-32. https://doi.org/10.1093/hmg/ddh284
  32. Voskarides K, Damianou L, Neocleous V, Zouvani I, Christodoulidou S, Hadjiconstantinou V, et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol 2007;18:3004-16. https://doi.org/10.1681/ASN.2007040444
  33. Salviati L, Sacconi S, Murer L, Zacchello G, Franceschini L, Laverda AM, et al. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 2005;65:606-8. https://doi.org/10.1212/01.wnl.0000172859.55579.a7
  34. Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 2011;121:2013-243. https://doi.org/10.1172/JCI45693
  35. Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, Dimauro S, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 2006;79:1125-9. https://doi.org/10.1086/510023
  36. Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 2013;123:5179-89. https://doi.org/10.1172/JCI69000
  37. Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 2000;275:4251-7. https://doi.org/10.1074/jbc.275.6.4251
  38. Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 2008;82:673-84. https://doi.org/10.1016/j.ajhg.2007.12.019
  39. Huynh Cong E, Bizet AA, Boyer O, Woerner S, Gribouval O, Filhol E, Arrondel C, et al. A homozygous missense mutation in the ciliary geneTTC21B causes familial FSGS. J Am Soc Nephrol 2014;25:2435-43. https://doi.org/10.1681/ASN.2013101126
  40. Ozaltin F, Li B, Rauhauser A, An SW, Soylemezoglu O, Gonul II, et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol 2013;24:377-84. https://doi.org/10.1681/ASN.2012090903
  41. Ebarasi L, Ashraf S, Bierzynska A, Gee HY, McCarthy HJ, Lovric S, et al. Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am J Hum Genet 2015;96:153-61. https://doi.org/10.1016/j.ajhg.2014.11.014
  42. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 2016;7.
  43. Solanki AK, Widmeier E, Arif E, Sharma S, Daga A, Srivastava P, et al. Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney Int 2019;10.
  44. Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med. 2011;365:295-306. https://doi.org/10.1056/NEJMoa1101273
  45. Bierzynska A, Soderquest K, Dean P, Colby E, Rollason R, Jones, et al. MAGI2 mutations cause congenital nephrotic syndrome. J Am Soc Nephrol 2017;28:1614-21. https://doi.org/10.1681/ASN.2016040387
  46. Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J, et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 2014;25:1991-2002. https://doi.org/10.1681/ASN.2013090976
  47. Dai S, Wang Z, Pan X, Wang W, Chen X, Ren H, et al. Functional analysis of promoter mutations in the ACTN4 and SYNPO genes in focal segmental glomerulosclerosis. Nephrol Dial Transplant 2010;25:824-35. https://doi.org/10.1093/ndt/gfp394
  48. Ozaltin F, Ibsirlioglu T, Taskiran EZ, Baydar DE, Kaymaz F, Buyukcelik M, et al. Disruption of PTPRO causes childhood onset nephrotic syndrome. Am J Hum Genet 2011;89:139-47. https://doi.org/10.1016/j.ajhg.2011.05.026
  49. Gee HY, Ashraf S, Wan X, Vega-Warner V, Esteve-Rudd J, Lovric S, Fang H, et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet 2014;94:884-90. https://doi.org/10.1016/j.ajhg.2014.04.010
  50. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. ApoL1 variants with kidney disease in African Americans. Science 2010;329:841-5. https://doi.org/10.1126/science.1193032
  51. Ovunc B, Otto EA, Vega-Warner V, Saisawat P, Ashraf S, Ramaswami G, et al. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. J Am Soc Nephrol 2011;22:1815-20. https://doi.org/10.1681/ASN.2011040337
  52. Barua M, Shieh E, Schlondorff J, Genovese G, Kaplan BS, Pollak MR. Exome sequencing and in vitro studies identified podocalyxin as a candidate gene for focal and segmental glomerulosclerosis. Kidney Int 2014;85:124-33. https://doi.org/10.1038/ki.2013.354
  53. Ashraf S, Kudo H, Rao J, Kikuchi A, Widmeier E, Lawson JA, et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun 2018;9:1960. https://doi.org/10.1038/s41467-018-04193-w
  54. Boerkoel CF, Takashima H, John J, Yan J, Stankiewicz P, Rosenbarker L, et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet 2002;30:215-20. https://doi.org/10.1038/ng821
  55. Izu A, Yanagida H, Sugimoto K, Fujita S, Sakata N, Wada N, et al. Pathogenesis of focal segmental glomerular sclerosis in a girl with the partial deletion of chromosome 6p. Tohoku J Exp Med 2011;223:187-92. https://doi.org/10.1620/tjem.223.187
  56. EspositoT, Lea RA, Maher BH, Moses D, Cox HC, Magliocca S, et al. Unique X-linked familial FSGS with co-segregating heart block disorder is associated with a mutation in the NXF5 gene. Hum Mol Genet 2013;22:3654-66. https://doi.org/10.1093/hmg/ddt215
  57. Sato Y, Tsukaguchi H, Morita H, Higasa K, Tran MTN, Hamada MA, et al. mutation in transcription factor MAFB causes Focal Segmental Glomerulosclerosis with Duane Retraction Syndrome. Kidney Int 2018;94:396-407. https://doi.org/10.1016/j.kint.2018.02.025
  58. Thong KM, Xu Y, Cook J, Takou A, Wagner B, Kawar B, et al. Cosegregation of focal segmental glomerulosclerosis in a family with familial partial lipodystrophy due to a mutation in LMNA. Nephron Clin Pract 2013;124:31-7. https://doi.org/10.1159/000354716
  59. Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, et al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway- Mowat syndrome. Am J Hum Genet 2014;95:637-48. https://doi.org/10.1016/j.ajhg.2014.10.011
  60. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 2017;49:1529-38. https://doi.org/10.1038/ng.3933
  61. Kambham N, Tanji N, Seigle RL, Markowitz GS, Pulkkinen L, Uitto J, et al. Congenital focal segmental glomerulosclerosis associated with beta4 integrin mutation and epidermolysis bullosa. Am J Kidney Dis 2000;36:190-6. https://doi.org/10.1053/ajkd.2000.8293
  62. Has C, Sparta G, Kiritsi D, Weibel L, Moeller A, Vega-Warner V, et al. Integrin alpha3 mutations with kidney, lung, and skin disease. N Engl J Med 2012;366:1508-14. https://doi.org/10.1056/NEJMoa1110813
  63. Okamoto K, Tokunaga K, Doi K, Fujita T, Suzuki H, Katoh T, et al. Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet 2011;43:459-63. https://doi.org/10.1038/ng.792
  64. Karamatic Crew V, Burton N, Kagan A, Green CA, Levene C, Flinter F, et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 2004;104:2217-23.
  65. Kaneko K, Hasui M, Hata A, Hata D, Nozu K Focal segmental glomerulosclerosis in a boy with Dent-2 disease. Pediatr Nephrol 2010;25:781-2. https://doi.org/10.1007/s00467-009-1362-z
  66. Agarwal AK1, Zhou XJ, Hall RK, Nicholls K, Bankier A, Van Esch H, et al. Focal segmental glomerulosclerosis in patients with mandibuloacral dysplasia owing to ZMPSTE24 deficiency. J Investig Med 2006;54:208-13. https://doi.org/10.2310/6650.2006.05068
  67. van der Knaap MS, Wevers RA, Monnens L, Jakobs C, Jaeken J, van Wijk JA. Congenital nephrotic syndrome: a novel phenotype of type I carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis 1996;19:787-91. https://doi.org/10.1007/BF01799174
  68. Kranz C, Denecke J, Lehle L, Sohlbach K, Jeske S, Meinhardt F, et al. Congenital disorder of glycosylationtype Ik(CDG-Ik): A Defect of Mannosyltransferase I. Am J Hum Genet 2004;74:545-51. https://doi.org/10.1086/382493
  69. Sethi S, Fervenza FC, ZhangY, Smith RJ. Secondary focal and segmental glomerulosclerosis associated with single-nucleotide polymorphisms in the genes encoding complement factor H and C3. Am J Kidney Dis 2012;60:316-21. https://doi.org/10.1053/j.ajkd.2012.04.011
  70. Fisher PW, Ho LT, Goldschmidt R, Semerdjian RJ, Rutecki GW. Familial Mediterranean fever, inflammation and nephrotic syndrome: fibrillary glomerulopathy and the M680I missense mutation. BMC Nephrol 2003;4:6. https://doi.org/10.1186/1471-2369-4-6
  71. Sanna-Cherchi S, Burgess KE, Nees SN, Caridi G, Weng PL, Dagnino M, et al. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int 2011;80:389-96. https://doi.org/10.1038/ki.2011.148
  72. Hermle T, Schneider R, Schapiro D, Braun DA, van der Ven AT, Warejko JK, et al. GAPVD1 and ANKFY1 Mutations Implicate RAB5 Regulation in Nephrotic Syndrome. J Am Soc Nephrol 2018;29:2123-38. https://doi.org/10.1681/ASN.2017121312
  73. Dorval G, Kuzmuk V, Gribouval O, Welsh GI, Bierzynska A, Schmitt A, et al. TBC1D8B Loss-of-Function Mutations Lead to X-Linked Nephrotic Syndrome via Defective Trafficking Pathways. Am J Hum Genet 2019;104:348-55. https://doi.org/10.1016/j.ajhg.2018.12.016