DOI QR코드

DOI QR Code

Investigation of Temperature Variation of Bridge Cables under Fire Hazard using Heat Transfer Analysis

열전달 해석을 통한 케이블교량 화재 시 케이블의 온도변화 분석

  • Chung, Chulhun (Department of Civil and Environmental Engineering, Dankook Univ.) ;
  • Choi, Hyun Sung (Department of Civil and Environmental Engineering, Dankook Univ.) ;
  • Lee, Jungwhee (Department of Civil and Environmental Engineering, Dankook Univ.)
  • 정철헌 (단국대학교 토목환경공학과) ;
  • 최현성 (단국대학교 토목환경공학과) ;
  • 이정휘 (단국대학교 토목환경공학과)
  • Received : 2019.07.24
  • Accepted : 2019.08.13
  • Published : 2019.10.31

Abstract

Recently, there have been frequent occurrences of bridge fires. Fires in cable-supported bridges can damage and brake cables due to high temperatures. In this study, fire scenarios that can occur on cable-supported bridges were set up. In addition, based on the results of vehicle fire tests, a fire intensity model was proposed and cable heat transfer analyses were performed on a target bridge. The analyses results demonstrated that temperature rises were identified on cables with a smaller cross-sectional area. Furthermore, vehicles other than tankers did not exceed the fire resistance criteria. When the tanker fire occurred on a bridge shoulder, the minimum diameter cable exceeded the fire resistance criteria; the height of the cable exceeding the fire resistance criteria was approximately 14 m from the surface. Therefore, the necessity of countermeasures and reinforcements of fire resistance was established. The results of this study confirmed that indirect evaluation of the temperature changes of bridge cables under fire is possible, and it was deemed necessary to further study the heat transfer analysis considering wind effects and the serviceability of the bridge when the cable temperature rises due to fire.

교량에서의 화재는 최근까지도 빈번하게 발생되고 있으며, 특히 케이블교량에서 화재가 발생될 시 케이블에 높은 온도상승으로 인해 케이블에 손상 및 파단이 발생될 수 있다. 본 연구에서는 케이블교량에서 발생될 수 있는 화재 시나리오를 설정하였다. 또한 실물차량 화재실험 결과를 토대로 화재강도모델을 제안하여 대상교량 케이블의 열전달 해석을 수행하였다. 해석 결과 단면적이 작은 케이블에서 더 높은 온도상승이 발생되며, 유조차를 제외한 차종의 경우 내화 성능 기준을 초과하지 않는 결과를 나타내었다. 유조차 화재의 경우 갓길에서 발생될 때 최소 단면적 케이블에서 내화 성능 기준을 초과하는 결과를 보이며, 기준을 초과하는 케이블의 높이는 약 14m로 나타나 이에 따른 대책 및 내화 보강의 필요성을 확인하였다. 본 연구결과를 통해 케이블교량에서 화재가 발생될 때 케이블의 온도변화에 대한 간접적인 평가가 가능한 것을 확인하였으며, 향후 화재 발생 시 바람에 영향을 고려한 열전달 해석과 케이블의 온도상승 시 교량의 사용성에 대한 추가적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. ABAQUS (2016) ABAQUS v2016 User's Manual, Dassault Systems, Simulia Corporation, Providence, Rhode Island, USA.
  2. ACI Committee 216 (1989) Guide for Determining the Fire Endurance of Concrete Elements, ACI 216R-89, American Concrete Institute, Detroit.
  3. Beyler, C.L. (2002) Fire Hazard Calculations for Large, Open Hydrocarbon Fires, in DiNenno, P. J. et al. (Ed) SFPE Handbook of Fire Protection Engineering (3rd ed.), Quincy, MA: National Fire Protection Association, pp.3-268-3-314.
  4. EN 1993-1-2:2005 (2005) EUROCODE 3: Design of Steel Structures-Part 1-2: General Rules, Structural Fire Design, Stage 49 Draft, Brussels: European Committee for Standardisation.
  5. Gil, H., Cho, J. (2012) Damage Cases of Highway Bridge due to Fire, Proc. 2012 KSCE Conference, KSCE, pp.1415-1418.
  6. Grant, G.B., Drysdale, D.D. (1997) Estimating Heat Release Rates from Large-scale Tunnel Fires, Fire Safety Science-Proceedings of the Fifth International Symposium, Melbourne, Australia, pp.1213-1224.
  7. Heselden, A. (1976) Studies of Fire and Smoke Behavior Relevant to Tunnels, Proceedings of the 2nd International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels, Cambridge, UK, pp.J1-1-J1-18.
  8. Heskestad, G. (1983) Luminous Height of Turbulent Diffusion Flames, Fire Saf. J., 5, pp.103-108. https://doi.org/10.1016/0379-7112(83)90002-4
  9. Ingason, H., Gustavsson, S., Dahlberg, M. (1994) Heat Release Rate Measurements in Tunnel Fires, SP Report 1994:08, Swedish National Testing and Research Institute.
  10. Ingason, H., Li Y.Z. (2017) Spilled Liquid Fires in Tunnels, Fire Saf. J., 91, pp.399-406. https://doi.org/10.1016/j.firesaf.2017.03.065
  11. Ingason, H., Lonnermark A. (2005) Heat Release Rates from Heavy Goods Vehicle Trailer Fire in Tunnels, Fire Saf. J., 40, pp.646-668. https://doi.org/10.1016/j.firesaf.2005.06.002
  12. Karlsson, B., Quintiere, B.G. (2000) Enclosure Fire Dynamics. CRC Press.
  13. Kim, S.S. (2011) A Study on Fire-Resistance Cover for Cable Bridge, Master Thesis, Jeonju University, Republic of Korea.
  14. Kim, Y.J., Park, Y.H., Park W.G. (2013) A Numerical Analysis on Fluid and Heat Transfer in an Electric Oven, Proc. KSOFE 2013 Spring Annual Conference, KSOFE, pp.78-83.
  15. Korea Expressway Corporation (2013) Exploring of Fire Resistance Design of Bridge Substructure and Underneath Structure, Korea Expressway Corporation.
  16. Kunikane, Y., Kawabata, N., Ishikawa, T., Takekuni, K., Shimoda, A. (2002) Thermal Fumes and Smoke Induced by Bus Fire Accident in Large Cross Sectional Tunnel, The Fifth JSME-KSME Fluids Engineering Conference, Nagoya, Japan.
  17. Lemair, T., Kenyon, Y. (2006) Large Scale Fire Tests in The Second Benelux Tunnel, Fire Technol., 42, pp.329-350. https://doi.org/10.1007/s10694-006-8434-4
  18. Liew, S., Deaves, D. (1992) Safety Assessment of Dangerous Goods Transport in a Road Tunnel, Proceedings of the First International Conference on Safety in Road and Rail Tunnels, Basel, Switzerland, pp.227-237.
  19. Mangs, J., Keski-Rahkonen, O. (1994) Characterization of the Fire Behaviour of a Burning Passenger Car. Part 1: Car Fire Experiments, Fire Saf. J., 23, pp.37-49. https://doi.org/10.1016/0379-7112(94)90060-4
  20. National Fire Data System statistics from 2018. 01.01.-2019.01.01. (Internet) Available: http://www.nfds.go.kr/stat/them.do
  21. NFPA 502 (2004) Standard for Road Tunnels, Bridges, and other Limited Access Highways, NFPA 502, 2004 ed.
  22. PIARC (1999) Fire and Smoke Control in Road Tunnels, PIARC, 05.05B-1999.
  23. PTI (2012) PTI DC45.1.1-12: Recommendations for Stay-Cable Design, Testing, and Installation. PTI, Farmington Hills, MI.
  24. Shokri, M., Beyler, C.L. (1989) Radiation from Larger Pool Fires, SFPE J. Fire Prot. Eng., 4, pp.141-150. https://doi.org/10.1177/104239158900100404
  25. Yoo, Y.H., Kim, H.Y., Shin, H.J. (2007) A Study on the Vehicle Fire Property Using the Large Scale Calorimeter, J. Korean Tunn. & Undergr. Space Assoc., 9(4), pp.343-349.