DOI QR코드

DOI QR Code

Effect of Ground Boundary Condition on Evaluation of Blast Resistance Performance of Precast Arch Structures

지반경계조건이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향

  • Lee, Jungwhee (epartment of Civil and Environmental Engineering, Dankook Univ.) ;
  • Choi, Keunki (epartment of Civil and Environmental Engineering, Dankook Univ.) ;
  • Kim, Dongseok (Institute of Technology, Interconstech Co., Ltd.)
  • 이정휘 (단국대학교 토목환경공학과) ;
  • 최근기 (단국대학교 토목환경공학과) ;
  • 김동석 ((주)인터컨스텍 기술연구소)
  • Received : 2019.05.09
  • Accepted : 2019.05.30
  • Published : 2019.10.31

Abstract

In this study, the effect of ground boundary conditions on the evaluation of blast resistance performance of precast arch structures was evaluated by a numerical analysis method. Two types of boundary conditions, namely, fixed boundary conditions and a perfectly matched layer (PML) were applied to numerical models. Blast loads that were much higher than the design load of the target structure were applied to compare the effects of the boundary conditions. The distribution and path of the ground explosion pressure, structural displacement, fracture of concrete, stress of concrete, and reinforcing bars were compared according to the ground boundary condition settings. As a result, the reflecting pressure shock wave at the ground boundaries could be effectively eliminated using PML elements; furthermore, the displacement of the foundation was reduced. However, no distinct difference could be observed in the overall structural behavior including the fracture and stress of the concrete and rebar. Therefore, when blast simulations are performed in the design of protective structures, it is rational to apply the fixed boundary condition on the ground boundaries as conservative design results can be achieved with relatively short computation times.

본 논문에서는 지반경계조건의 설정이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향을 수치해석적 기법을 사용하여 파악하고자 하였다. 지반경계조건은 고정조건과 PML(perfectly matcher layer)을 이용한 경계조건의 두 가지로 적용하였으며, 폭발하중은 대상 구조물의 설계하중보다 큰 하중을 사용하여 경계조건의 영향을 명확히 비교할 수 있도록 하였다. 폭발압력의 분포 및 경로, 구조물에 발생하는 변위, 콘크리트의 파쇄여부, 콘크리트 및 철근의 응력을 비교 분석하였으며, PML을 적용하였을 때 지반 경계면에서 발생하는 반사파를 효과적으로 제거할 수 있음을 확인하였다. 또한, 이로 인해 구조물 기초부의 변위가 감소하는 것으로 나타났다. 하지만, 콘크리트의 파쇄여부, 콘크리트 및 철근에 발생하는 응력을 포함한 전반적인 구조물의 거동에는 뚜렷한 차이가 발생하지 않았다. 따라서 방호시설의 설계를 목적으로 폭발시뮬레이션을 수행하는 경우에는 지반경계조건에 고정조건을 적용하였을 때 안전측의 결과를 얻을 수 있으며, 해석시간이 단축되는 이점도 있으므로 이러한 면을 종합적으로 고려하여 지반경계조건을 고정조건으로 적용하는 것이 합리적이라고 판단된다.

Keywords

References

  1. Basu, U. (2009) Explicit Finite Element Perfectly Matched Layer for Transient Three-dimensional Elastic Waves, Int. J. Numer. Methods Eng., 77(2), pp.151-176. https://doi.org/10.1002/nme.2397
  2. Basu, U. (2011) Soil-Structure Interaction, http://www.lstc.com/applications/soil_structure.
  3. Basu, U., Chopra, A.K. (2003) Perfectly Matched Layers for Time-harmonic Elastodynamics of Unbounded Domains: Theory and Finite-element Implementation, Comput. Methods Appl. Mech. & Eng., 192(11-12), pp.1337-1375. https://doi.org/10.1016/S0045-7825(02)00642-4
  4. Basu, U., Chopra, A.K. (2004) Perfectly Matched Layers Transient Elastodynamics of Unbounded Domains, Int. J. Numer. Methods Eng., 59(8), pp.1039-1074. https://doi.org/10.1002/nme.896
  5. Bolisseti, C., Whittaker, A.S., Coleman, J.L. (2015) Frequency and Time Domain Method in Soil-Structure Interaction Analysis, Proc. the 23rd Conference on Structural Mechanics in Reactor Technology, Manchester, United Kingdom.
  6. Bolisseti, C., Whittaker, A.S., Coleman, J.L. (2018) Linear and Nonlinear Soil-Structure Interaction Analysis of Building and Safety-related Nuclear Structures, Soil Dyn. & Earthq. Eng., 107, pp.218-233. https://doi.org/10.1016/j.soildyn.2018.01.026
  7. Chew, W.C., Teixeira, F.L. (1999) Unified Analysis of Perfectly Matched Layers Using Differental Forms, Microw. & Opt. Technol. Letters, 20(2), pp.124-126. https://doi.org/10.1002/(SICI)1098-2760(19990120)20:2<124::AID-MOP12>3.0.CO;2-N
  8. Chew, W.C., Weedon, W.H. (1994) A 3-D Perfectly Matched Medium from Modified Maxwell's Equations with Stretched Coordinates, Microw. & Opt. Technol. Letters, 7(13), pp.599-604. https://doi.org/10.1002/mop.4650071304
  9. Choung, J.M., Shim, C.S., Kim, K.S. (2011) Plasticity and Fracture Behavior of Marine Structural Steel, Part I:Theoretical Background of Strain Hardening and Rate Hardening, KSOE J. Ocean Eng. & Technol., 25(2), pp.134-144. https://doi.org/10.5574/KSOE.2011.25.2.134
  10. Eerenger, J.P. (1994) A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comput. Phys., 114(2), pp.185-200. https://doi.org/10.1006/jcph.1994.1159
  11. Gupta, S., Penzien, J. (1982) Three-Dimensional Hybrid Modeling of Soil-Structure Interaction, Earq. Eng. & Struct. Dyn., 10(1), pp.69-87. https://doi.org/10.1002/eqe.4290100106
  12. Kausel, E., Roesset, M.J. (1977) Semianalytic Hyperelement for Layered Strata, J. Eng. Mech. Div., 103(4), pp.569-588. https://doi.org/10.1061/JMCEA3.0002251
  13. Kim, D.K., Yun, C.B., Kim, D.H. (2001) Earthquake Response Analysis Method for 2-D Soil-Structure Systems using Finite and Infinite Elements in Time Domain, KSCE J. Civil Engineering, 21(4-A), pp.425-433.
  14. Kim, J.K., Koh, H.M., Kwon, K.J., Yi, J.S. (2000) A Three-dimensional Transmitting Boundary Formulated in Cartesian co-ordinate System for The Dynamics of Non-axisymmetric Foundations, Earthq. Eng. & Struct. Dyn., 29(10), pp.1527-1546. https://doi.org/10.1002/1096-9845(200010)29:10<1527::AID-EQE978>3.0.CO;2-S
  15. Kim, J.M., Yun, C.B. (1995) Dynamic Infinite Elements for Soil-Structure Interaction Analysis in Multi-Layered Halfspaces, KSCE J. Civil Eng., 15(1), pp.51-62.
  16. Kim, M.K., Lim, Y.M., Cho, W.Y. (2001) Three Dimensional Dynamic Response of Surface Foundation on Layered Half-space, Eng. Struct., 23(11), pp.1427-1436. https://doi.org/10.1016/S0141-0296(01)00051-7
  17. Kim, M.K., Lim, Y.M., Kim. M.K., Choi, Y.T. (2001) Seismic Analysis of Soil-Pile-Structure Interaction System, KSCE J. Civil Eng., 21(5-A), pp.629-643.
  18. Kim, M.K., Lim, Y.M., Rhee, J.W. (2000) Dynamic Analysis of Layered Half Planeds by Coupled Finite and Boundary Elements, Eng. Struct., 22(6), pp.670-680. https://doi.org/10.1016/S0141-0296(98)00141-2
  19. Lee. G.H., Hong, K.Y., Lee, E.H., Kim, J.M. (2013) Verification of Linear FE Model for Nonlinear SSI Analysis by Boundary Reaction Method, J. Comput. Struct. Eng. Inst. Koera, 27(2), pp.95-102.
  20. Lim, C.M., Park, J.H., Shin, Y.S. (2004) Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction, J. Korean Soc. Saf., 19(2), pp.119-124.
  21. LSTC (2018) LS-DYNA Keyword User's Manual. Version 971., Livermore Software Technology Corporation(LSTC), Livermore.
  22. Lysmer, J., Kuhlemeyer, R.L. (1969) Finite Dynamic Model for Infinite Media, J. Eng. Mech. Div., 95(4), pp.859-878. https://doi.org/10.1061/JMCEA3.0001144
  23. Murray, Y.D. (2007) User Manual for LS-DYNA Concrete Material Model 159, Report No. FHWA-HRT-05-062, Federal Highway Administraion.
  24. Novak, M. (1980) Soil-Pile Interaction Under Dynamic Loads, Proc. Numerical Method in Offshore Piling. ICE, London., pp.59-68.
  25. Seo, C.G., Yun, C.B., Kim, J.M. (2007) Cuboidal Infinite Elements for Soil-Structure-Interaction Analysis in Multi-Layered Half-Space, J. Comput. Struct. Eng. Inst. Koera, 20(1), pp.39-50.
  26. Seo, C.G., Yun, C.B., Kim, J.M. (2007) Radial 3-D Elastodynamic Infinite Elements, KSCE J. Civil Eng., 27(5A), pp.701-711.
  27. Uno, K., Shiojiri, H., Kawaguchi, K., Nakamura, M. (2008) Analytical Method, Modeling and Boundary Condition for The Response Analysis with Nonlinear Soil-Structure Interaction, Proc. the 14th World Conference on Earthquake Engineering, Beijing, China.
  28. Von Estorff, O. (1991) Dynamic Response of Elastic Blocks by Time Domain BEM and FEM, Comput.& Struct., 38(3), pp.289-300. https://doi.org/10.1016/0045-7949(91)90107-W
  29. White, W., Valliapan, S., Lee, I.K. (1977) Unified Boundary for Finite Dynamic Model, J. Eng. Mech. Div., 103(5), pp.949-964. https://doi.org/10.1061/JMCEA3.0002285
  30. Wolf, J.P. (1985) Dynamic Soil-Structure Interaction, Prentice-Hall.
  31. Wolf, J.P. (1987) Soil-Structure-Interaction Analysis in Time Domain, Nucl. Eng. & Des., 111, pp.381-393. https://doi.org/10.1016/0029-5493(89)90249-5
  32. Yang, S.C., Yun, C.B. (1991) Dynamic Infinite Elements for Soil-Structure Interaction Analysis, KSCE J. Civil Eng., 11(3), pp.47-58.