DOI QR코드

DOI QR Code

Numerical Study on Pilot Ratio Effect of Shale-Gas in a Commercial Gas Turbine

상용급 가스터빈에서 셰일가스 파일럿비 영향에 관한 수치해석적 연구

  • Seo, Dong Kyun (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Joo, Yong-Jin (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Park, Seik (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Kim, Mi-yoeng (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Shin, Jugon (KEPCO Research Institute, Korea Electric Power Corporation)
  • Received : 2019.07.15
  • Accepted : 2019.10.04
  • Published : 2019.09.30

Abstract

In this work, the flow and combustion characteristics using a 3-D numerical simulation was evaluated for a shale gas fueled combustor in a commercial class gas turbine. The Standard k-e turbulence model, 2 step methane oxidation mechanism, Finite rate/Eddy dissipation reaction model, DTRM radiation model were employed and validated well at the baseline condition (Natural Gas, Pilot Ratio 0.2). Based on the validated models, the combustion characteristics of shale gas was evaluated for three pilot ratios cases. It was found that NOx concentrations for all shale gas cases were less than the that for city gas, which imply that, at the selected PRs, the condition for combustion stability is satisfied. In addition, for higher PR, whereas the average temperatures at the exit are the same, the NOx increases. It means that diffusion combustion portion increases due to the higher PR.

논문에서는 상용급 가스터빈을 대상으로 해서 셰일가스를 연료로 공급할 때 유동 및 연소특성을 3-D 수치해석적 방법으로 구하였다. 이 때, Standard k-e 난류모델, 2단 메탄산화반응, Finite rate/Eddy dissipation 반응모델, DTRM 복사모델이 사용되었고, 기준조건(도시가스, PR 0.07)에서 출구 측에서 형성되는 온도는 이전 문헌 값과 비슷한 값을 보였다. 위 모델을 바탕으로 해서 연료조건으로 기존의 도시가스 외에 세 가지 셰일가스 조건(도시가스 대비 열량기준 80%, 90%, 105%)을 선정하였고, 각 연료조건에 대하여 세 가지 연료분사조건(PR=0.7, 0.9, 0.11)에 대한 해석을 수행하였다. 해석결과, 모든 셰일가스 연료공급 조건에 대하여 도시가스 대비 온도 혹은 NOx 측면에서 연소안정화를 만족하였다. 또한 모든 조건에 대해서 PR이 증가할수록 출구측 평균온도는 일정했지만 NOx량은 증가하였다. 이는 파일럿비가 증가할수록 상대적으로 확산연소가 증가했기 때문이다.

Keywords

References

  1. 이종수, 김나영, 송명규, 조재강, "문재인 정부 출범, 에너지정책 공약실현 가능성은", 투데이에너지, 5월 12일, 2017.
  2. 박세익, 주용진, 서동균, 신주곤, "발전용 가스터빈의 저열량가스적용연소기술개발", 중간보고서, 2017.
  3. Y. A. Eldrainy, K. M. Saqr, H. S. Aly, M. N. M. Jaafar, "CFD insight of the flow dynamics in a novel swirler for gas turbine combustors," International Communications in Heat and Mass Transfer, Vol. 36, No. 36, pp 936-941, 2009. https://doi.org/10.1016/j.icheatmasstransfer.2009.06.013
  4. M. M. Torkzadeh, F. Bolourchifard, E. Amani, "An investigation of airswirl design criteria for gas turbine combustors through a multiobjective CFD optimization," Fuel, Vol. 186, pp 734-749, 2016. https://doi.org/10.1016/j.fuel.2016.09.022
  5. J. Yi, D. Jeong, K. Y, Huh, J. Jin, J. Park, M. C. Lee, "3D RANS simulation and the prediction by CRN regarding NOx in a lean premixed combustion in a gas turbine combustor," J. Korean Mech. Eng., Vol. 35, No. 12, pp 1257-1264, 2011.
  6. M. Choi, Y. Sung, M. Won, Y. Park, M. Kim, "Effect of fuel distribution on turbulence and combustion characteristics of a micro gas turbine combustor," J. Ind. Eng. Chem., Vol. 48, pp 24-35, 2017. https://doi.org/10.1016/j.jiec.2016.11.020
  7. S. Tanimura, M. Nose, K. Ishizaka, S. Takiguchi, J. Rodriguez, "Advanced dry low nox combustor for mitsubishi G class gas turbine," Proceedings of ASME Turbo Expo 2008, June 9-13, Berlin, Germany, 2008.
  8. K. Tanaka, K. Nishida, W. Akizuki. "Gas turbine combustor technology contributing to environmental conservation," MHI Technical Review, Vol. 46, No. 2, pp 6-12, 2009.
  9. E. Ito, K. Tsukagoshi, Y. Sakamoto, J. Masada, K. Saito, S. Takiguchi, "Development of key technologies for an ultra-high-temperature gas turbine," MHI Technical Review, Vol. 48, No. 3, pp 1-8, 2011.
  10. M. C. Lee, J. H. Chung, W. S. Park, S. Park, Y. Yoon, "The combustion tuning methodology of an industrial gas turbine using a sensitivity analysis," Applied Thermal Engineering, Vol. 50, pp 714-721, 2013. https://doi.org/10.1016/j.applthermaleng.2012.07.016
  11. J.H. AHN, T.S.KIM, "Influence of Oxygen Supply Method on the Performance of IGCC Plants," Korean Hydrogen and New Energy Society, Vol. 23, No. 3, pp. 264-273, 2012/ https://doi.org/10.7316/KHNES.2012.23.3.264
  12. Sher shah Amarkhail, "Air Separation," Doctor Thesis, Faculty of Chemical and Food technology, Slovak Univ. Page 14-29, 2009.
  13. Juan Sebastian Lopez-Echeverry a, Simon Reif-Acherman a, Eduard Araujo-Lopez, "Peng-Robinson equation of state : 40 years through cubics," Fluid Phase Equilibria 447, 39-71, 2017. https://doi.org/10.1016/j.fluid.2017.05.007