DOI QR코드

DOI QR Code

Efficient Single Image Dehazing by Pixel-based JBDCP and Low Complexity Transmission Estimation

저 복잡도 전달량 추정 및 픽셀 기반 JBDCP에 의한 효율적인 단일 영상 안개 제거 방법

  • Kim, Jong-Ho (Dept. Multimedia Engineering, Sunchon National University)
  • 김종호 (순천대학교 멀티미디어공학과)
  • Received : 2019.09.10
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

This paper proposes a single image dehazing that utilizes the transmission estimation with low complexity and the pixel-based JBDCP (Joint Bright and Dark Channel Prior) for the effective application of hazy outdoor images. The conventional transmission estimation includes the refinement process with high computational complexity and memory requirements. We propose the transmission estimation using combination of pixel- and block-based dark channel information and it significantly reduces the complexity while preserving the edge information accurately. Moreover, it is possible to estimate the transmission reflecting the image characteristics, by obtaining a different air-light for each pixel position of the image using the pixel-based JBDCP. Experimental results on various hazy images illustrate that the proposed method exhibits excellent dehazing performance with low complexity compared to the conventional methods; thus, it can be applied in various fields including real-time devices.

본 논문에서는 안개 성분을 포함한 실외영상의 효과적인 응용을 위하여 저 복잡도를 갖는 전달량 추정 및 픽셀 기반 JBDCP(: Joint Bright and Dark Channel Prior)를 이용한 단일 영상 기반 안개 제거 방법을 제안한다. 기존의 전달량 추정은 계산량과 메모리 요구량이 큰 정련과정을 포함하는 반면, 제안하는 안개 제거 방법은 픽셀단위 및 블록단위 dark channel 정보를 결합하여 에지 정보가 보존되는 전달량을 추정하고 복잡도를 크게 감소시킨다. 또한 픽셀 기반 JBDCP를 이용하여 영상의 각 위치마다 다른 안개값을 구함으로써 영상의 특성을 반영한 전달량 추정이 가능하다. 다양한 안개 영상에 대해 수행한 실험 결과는 제안하는 방법이 기존의 방법에 비해 저 복잡도로 실행되면서 우수한 안개 제거 성능을 보여 실시간 기기를 포함한 다양한 분야에 응용될 수 있음을 나타낸다.

Keywords

References

  1. S. Kim and G. Seok, "Effective Eye Detection for Face Recognition to Protect Medical Information," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 5, Oct. 2017, pp. 923-932. https://doi.org/10.13067/JKIECS.2017.12.5.923
  2. C. Yeh, L. Kang, M. Lee, and C. Lin, "Haze Effect Removal from Image via Haze Density Estimation in Optical Model," Optics Express, vol. 21, no. 22, Nov. 2013, pp. 27127-27141. https://doi.org/10.1364/OE.21.027127
  3. J. Tarel and N. Hautiere, "Fast Visibility Restoration from a Single Color or Gray Level Images," In Proc. IEEE Int. Conf. on Computer Vision (ICCV), Kyoto, Japan, Sept. 2009, pp. 2201-2208.
  4. Y. Schechner, S. Narasimhan, and S. Nayer, "Instant Dehazing of Images Using Polarization," In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Kauai, USA, Dec. 2001, pp. 325-332.
  5. S. Shwartz, E. Namer, and Y. Schechner, "Blind Haze Separation," In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), New York, USA, June 2006, pp. 1984-1991.
  6. S. Narasimhan and S. Nayer, "Contrast Restoration of Weather Degraded Images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 6, June 2003, pp. 713-724. https://doi.org/10.1109/TPAMI.2003.1201821
  7. S. Nayer and S. Narasimhan, "Vision in Bad Weather," In Proc. IEEE Int. Conf. on Computer Vision (ICCV), Kerkyra, Greece, Sept. 1999, pp. 820-827.
  8. J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, and D. Lischinski, "Deep Photo: Model-Based Photograph Enhancement and Viewing," ACM Trans. Graphics, vol. 27, no. 5, Dec. 2008, pp. 116:1-116:10.
  9. S. Lee, S. Yun, J. Nam, C. Won, and S. Jung, "A Review on Dark Channel Prior based Image Dehazing Algorithms," The European Association for Signal Processing (EURASIP) J. on Image and Video Processing, vol. 2016, no. 4, Dec. 2016, pp. 1-23.
  10. R. Tan, "Visibility in Bad Weather from a Single Image," In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Anchorage, USA, June 2008, pp. 1-8.
  11. R. Fattal, "Single Image Dehazing," ACM Trans. Graphics, vol. 27, no. 3, Aug. 2008, pp. 1-9. https://doi.org/10.1145/1360612.1360671
  12. K. He, J. Sun, and X. Tang, "Single Image Haze Removal Using Dark Channel Prior," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12, Dec. 2011, pp. 2341-2353. https://doi.org/10.1109/TPAMI.2010.168
  13. J. Kim, "Histogram Modification based on Additive Term and Gamma Correction for Image Contrast Enhancement," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 5, Oct. 2018, pp. 1117-1124. https://doi.org/10.13067/JKIECS.2018.13.5.1117
  14. J. Kim, "Single Image Haze Removal Algorithm using Dual DCP and Adaptive Brightness Correction," J. of the Korea Academia-Industrial cooperation Society, vol. 19, no. 11, Nov. 2018, pp. 31-37.
  15. W. Oh and J. Kim, "Single Image Haze Removal Technique via Pixel-based Joint BDCP and Hierarchical Bilateral Filter," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 1, Feb. 2019, pp. 257-264. https://doi.org/10.13067/JKIECS.2019.14.1.257
  16. Z. Mi, H. Zhou, Y. Zheng, and M. Wang, "Single Image Dehazing via Multi-scale Gradient Domain Contrast Enhancement," IET Image Process, vol. 10, no. 3, Mar. 2016, pp. 206-214. https://doi.org/10.1049/iet-ipr.2015.0112
  17. C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images," In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Bombay, India, Jan. 1998, pp. 839-846.
  18. A. Levin, D. Lischinski, and Y. Weiss, "A Closed Form Solution to Natural Image Matting," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, Feb. 2008, pp. 228-242. https://doi.org/10.1109/TPAMI.2007.1177