References
- Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46: 509-520. https://doi.org/10.1016/0035-9203(52)90042-4
- Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. 2016. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387: 1531-1539. https://doi.org/10.1016/S0140-6736(16)00562-6
- Chang C, Ortiz K, Ansari A, Gershwin ME. 2016. The Zika outbreak of the 21st century. J. Autoimmun. 68: 1-13. https://doi.org/10.1016/j.jaut.2016.02.006
- Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. 2016. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro Surveill. 21(32).
- Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, et al. 2016. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22: 1256-1259. https://doi.org/10.1038/nm.4193
- Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, et al. 2 016. A Mouse M odel o f Zika Virus Pathogenesis. Cell Host Microbe 19: 720-730. https://doi.org/10.1016/j.chom.2016.03.010
- van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. 2017. Zika Virus Targeting in the Developing Brain. J. Neurosci. 37: 2161-2175. https://doi.org/10.1523/JNEUROSCI.3124-16.2017
- Wise J. 2016. Study links Zika virus to Guillain-Barre syndrome. BMJ 352: i1242. https://doi.org/10.1136/bmj.i1242
- Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider Ade B, et al. 2016. Zika virus: medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10(3): e0004530. https://doi.org/10.1371/journal.pntd.0004530
- Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA 113: 14408-14413. https://doi.org/10.1073/pnas.1618029113
- Janeway CA, Jr., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
- Meylan E, Tschopp J, Karin M. 2006. Intracellular pattern recognition receptors in the host response. Nature 442: 39-44. https://doi.org/10.1038/nature04946
- Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
- Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R. 2003. Convergence of the NF-kappaB and interf eron s ignaling p athways in the r egulation o f antiviral defense and apoptosis. Ann. NY Acad. Sci. 1010: 237-248. https://doi.org/10.1196/annals.1299.042
- Park MK, Cho H, Roh SW, Kim SJ, Myoung J. 2019. Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication. Sci. Rep. 9: 2372. https://doi.org/10.1038/s41598-019-38870-7
- Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon sresponses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
- Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
- Baek YH, Cheon HS, Park SJ, Lloren KKS, Ahn SJ, Jeong JH, et al. 2018. Simple, rapid and sensitive portable molecular diagnosis of SFTS virus using reverse transcriptional loopmediated isothermal amplification (RT-LAMP). J. Microbiol. Biotechnol. 28: 1928-1936. https://doi.org/10.4014/jmb.1806.06016
- Phuong NH, Kwak C, Heo CK, Cho EW, Yang J, Poo H. 2018. Development and characterization of monoclonal antibodies against nucleoprotein for diagnosis of influenza A virus. J. Microbiol. Biotechnol. 28: 809-815. https://doi.org/10.4014/jmb.1801.01002
- Tong C, Chen N, Liao X, Yuan X, Sun M, Li X, et al. 2017. Continuous p assaging o f a r ecombinant C-strain v irus in PK-15 cells selects culture-adapted variants that showed enhanced replication but failed to induce fever in rabbits. J. Microbiol. Biotechnol. 27: 1701-1710. https://doi.org/10.4014/jmb.1704.04065
- Xi H, Zhang K, Yin Y, Gu T, Sun Q, Shi L, et al. 2017. Fusion peptide improves stability and bioactivity of single chain antibody against rabies virus. J. Microbiol. Biotechnol. 27: 718-724. https://doi.org/10.4014/jmb.1611.11062
- Zhao K, Duan X, Hao L, Wang X, Wang Y. 2017. Immune effect of newcastle disease virus DNA vaccine with C3d as a molecular adjuvant. J. Microbiol. Biotechnol. 27: 2060-2069. https://doi.org/10.4014/jmb.1708.08017
- Lee JY, Lee JS, Materne EC, Rajala R, Ismail AM, Seto D, et al. 2018. Bacterial RecA protein promotes adenoviral recombination during in vitro infection. mSphere 3. pii: e00105-18.
- Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
- Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
- Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
- Collins SE, Noyce RS, Mossman KL. 2004. Innate cellular response to virus particle entry requires IRF3 but not virus replication. J. Virol. 78: 1706-1717. https://doi.org/10.1128/JVI.78.4.1706-1717.2004
- Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347: aaa2630. https://doi.org/10.1126/science.aaa2630
- Sun G, Larsen CN, Baumgarth N, Klem EB, Scheuermann RH. 2017. Comprehensive annotation of mature peptides and genotypes for Zika virus. PLoS One 12: e0170462. https://doi.org/10.1371/journal.pone.0170462
- Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3: 13-22. https://doi.org/10.1038/nrmicro1067
- Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, et al. 2014. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343: 881-885. https://doi.org/10.1126/science.1247749
- Wu Y, Liu Q, Zhou J, Xie W, Chen C, Wang Z, et al. 2017. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov. 3: 17006.
- Xia H, Luo H, Shan C, Muruato AE, Nunes BTD, Medeiros DBA, et al. 2018. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9: 414. https://doi.org/10.1038/s41467-017-02816-2
- Zhang X, Xie X, Zou J, Xia H, Shan C, Chen X, et al. 2019. Genetic and biochemical characterizations of Zika virus NS2A protein. Emerg. Microbes Infect. 8: 585-602. https://doi.org/10.1080/22221751.2019.1598291
- Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA. 2008. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol. 82: 4731-4741. https://doi.org/10.1128/JVI.00002-08
- Liu WJ, Chen HB, Khromykh AA. 2003. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for an onconservative residue in NS3 in RNA replication. J. Virol. 77: 7804-7813. https://doi.org/10.1128/JVI.77.14.7804-7813.2003
- Marquez-Jurado S, Nogales A, Avila-Perez G, Iborra FJ, Martinez-Sobrido L, Almazan F. 2018. An alanine-to-valine substitution in the residue 175 of Zika virus NS2A protein affects viral RNA synthesis and attenuates the virus in vivo. Viruses 10(10). pii: E547
- Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A. 2003. Inhibition of interferon signaling by dengue virus. Proc. Natl. Acad. Sci. USA 100: 14333-14338. https://doi.org/10.1073/pnas.2335168100
- Tu YC, Yu CY, Liang JJ, Lin E, Liao CL, Lin YL. 2012. Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J. Virol. 86: 10347-10358. https://doi.org/10.1128/JVI.00525-12
- Xie X, Zou J, Puttikhunt C, Yuan Z, Shi PY. 2015. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol. 89: 1298-1313. https://doi.org/10.1128/JVI.02882-14
- Wang CC, Huang ZS, Chiang PL, Chen CT, Wu HN. 2009. Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett. 583: 691-696. https://doi.org/10.1016/j.febslet.2009.01.008
- Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R. 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem. 282: 8873-8882. https://doi.org/10.1074/jbc.M609919200
- Ambrose RL, Mackenzie JM. 2011. A conserved peptide in West Nile virus NS4A protein contributes to proteolytic processing and is essential for replication. J. Virol. 85: 11274-11282. https://doi.org/10.1128/JVI.05864-11
- Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, et al. 2018. Zika virus non-structural protein 4A blocks the RLR-MAVS signaling. Front Microbiol. 9: 1350. https://doi.org/10.3389/fmicb.2018.01350
- Li XD, Ye HQ, Deng CL, Liu SQ, Zhang HL, Shang BD, et al. 2015. Genetic interaction between NS4A and NS4B for replication of Japanese encephalitis virus. J. Gen. Virol. 96: 1264-1275. https://doi.org/10.1099/vir.0.000044
- Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, et al. 2016. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19: 663-671. https://doi.org/10.1016/j.stem.2016.07.019
- Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. 2002. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21: 2757-2768. https://doi.org/10.1093/emboj/21.11.2757
- Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, et al. 2009. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15: 2340-2350. https://doi.org/10.1261/rna.1609709
- Dong H, Fink K, Zust R, Lim SP, Qin CF, Shi PY. 2014. Flavivirus RNA methylation. J. Gen. Virol. 95: 763-778. https://doi.org/10.1099/vir.0.062208-0
- Ivashkiv LB, Donlin LT. 2014. Regulation of type I interferon responses. Nat. Rev. Immunol. 14: 36-49. https://doi.org/10.1038/nri3581
- Taniguchi T, Takaoka A. 2002. The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol. 14: 111-116. https://doi.org/10.1016/S0952-7915(01)00305-3
- Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
- Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
- Brisse M, Ly H. 2019. Comparative structure and function analysis of the RIG-I-Like receptors: RIG-I and MDA5. Front Immunol. 10: 1586. https://doi.org/10.3389/fimmu.2019.01586
- Hu Y, Dong X, He Z, Wu Y, Zhang S, Lin J, et al. 2019. Zika virus antagonizes interferon response in patients and disrupts RIG-I-MAVS interaction through its CARD-TM domains. Cell Biosci. 9: 46. https://doi.org/10.1186/s13578-019-0308-9
- Li W, Li N, Dai S, Hou G, Guo K, Chen X, et al. 2019. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA. FASEB J. 33: 9929-9944. https://doi.org/10.1096/fj.201900260R
- Kumar A, Hou S, Airo AM, Limonta D, Mancinelli V, Branton W, et al. 2016. Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep. 17: 1766-1775. https://doi.org/10.15252/embr.201642627
Cited by
- Middle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors by a Differential Mechanism vol.29, pp.12, 2019, https://doi.org/10.4014/jmb.1911.11024
- The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response vol.8, pp.3, 2020, https://doi.org/10.3390/vaccines8030530
- Zika virus NS2A inhibits interferon signaling by degradation of STAT1 and STAT2 vol.12, pp.1, 2019, https://doi.org/10.1080/21505594.2021.1935613
- LAMR1 restricts Zika virus infection by attenuating the envelope protein ubiquitination vol.12, pp.1, 2019, https://doi.org/10.1080/21505594.2021.1948261
- Zika Virus Pathogenesis: A Battle for Immune Evasion vol.9, pp.3, 2019, https://doi.org/10.3390/vaccines9030294
- Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors vol.10, pp.4, 2019, https://doi.org/10.3390/pathogens10040448
- Bovine viral diarrhea virus NS4B protein interacts with 2CARD of MDA5 domain and negatively regulates the RLR-mediated IFN-β production vol.302, 2019, https://doi.org/10.1016/j.virusres.2021.198471
- Roles of Non-Structural Protein 4A in Flavivirus Infection vol.13, pp.10, 2019, https://doi.org/10.3390/v13102077