DOI QR코드

DOI QR Code

Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway

  • Ngan, Nguyen Thi Thuy (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Chonbuk National University) ;
  • Kim, Seong-Jun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Lee, Jeong Yoon (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Chonbuk National University) ;
  • Myoung, Jinjong (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Chonbuk National University)
  • Received : 2019.09.10
  • Accepted : 2019.09.24
  • Published : 2019.10.28

Abstract

Zika virus (ZIKV) is a mosquito-transmitted, emerging Flavivirus that causes Guillain-$Barr{\acute{e}}$ syndrome and microcephaly in adults and fetuses, respectively. Since ZIKV was first isolated in 1947, severe outbreaks have occurred at various places worldwide, including Yap Island in 2007, French Polynesia in 2013, and Brazil in 2015. Although incidences of ZIKV infection and dissemination have drastically increased, the mechanisms underlying the pathogenesis of ZIKV have not been sufficiently studied. In addition, despite extensive research, the exact roles of individual ZIKV genes in the viral evasion of the host innate immune responses remain elusive. Besides, it is still possible that more than one ZIKV-encoded protein may negatively affect type I interferon (IFN) induction. Hence, in this study, we aimed to determine the modulations of the IFN promoter activity, induced by the MDA5/RIG-I signaling pathway, by over-expressing individual ZIKV genes. Our results show that two nonstructural proteins, NS2A and NS4A, significantly down-regulated the promoter activity of IFN-${\beta}$ by inhibiting multiple signaling molecules involved in the activation of IFN-${\beta}$. Interestingly, while NS2A suppressed both full-length and constitutively active RIG-I, NS4A had inhibitory activity only on full-length RIG-I. In addition, while NS2A inhibited all forms of IRF3 (full-length, regulatory domain-deficient, and constitutively active), NS4A could not inhibit constitutively active IRF3-5D. Taken together, our results showed that NS2A and NS4A play major roles as antagonists of MDA5/RIG-I-mediated IFN-${\beta}$ induction and more importantly, these two viral proteins seem to inhibit induction of the type I IFN responses in differential mechanisms. We believe this study expands our understanding regarding the mechanisms via which ZIKV controls the innate immune responses in cells and may pave the way to development of ZIKV-specific therapeutics.

Keywords

References

  1. Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46: 509-520. https://doi.org/10.1016/0035-9203(52)90042-4
  2. Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. 2016. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387: 1531-1539. https://doi.org/10.1016/S0140-6736(16)00562-6
  3. Chang C, Ortiz K, Ansari A, Gershwin ME. 2016. The Zika outbreak of the 21st century. J. Autoimmun. 68: 1-13. https://doi.org/10.1016/j.jaut.2016.02.006
  4. Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. 2016. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro Surveill. 21(32).
  5. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, et al. 2016. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22: 1256-1259. https://doi.org/10.1038/nm.4193
  6. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, et al. 2 016. A Mouse M odel o f Zika Virus Pathogenesis. Cell Host Microbe 19: 720-730. https://doi.org/10.1016/j.chom.2016.03.010
  7. van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. 2017. Zika Virus Targeting in the Developing Brain. J. Neurosci. 37: 2161-2175. https://doi.org/10.1523/JNEUROSCI.3124-16.2017
  8. Wise J. 2016. Study links Zika virus to Guillain-Barre syndrome. BMJ 352: i1242. https://doi.org/10.1136/bmj.i1242
  9. Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider Ade B, et al. 2016. Zika virus: medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10(3): e0004530. https://doi.org/10.1371/journal.pntd.0004530
  10. Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA 113: 14408-14413. https://doi.org/10.1073/pnas.1618029113
  11. Janeway CA, Jr., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  12. Meylan E, Tschopp J, Karin M. 2006. Intracellular pattern recognition receptors in the host response. Nature 442: 39-44. https://doi.org/10.1038/nature04946
  13. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
  14. Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R. 2003. Convergence of the NF-kappaB and interf eron s ignaling p athways in the r egulation o f antiviral defense and apoptosis. Ann. NY Acad. Sci. 1010: 237-248. https://doi.org/10.1196/annals.1299.042
  15. Park MK, Cho H, Roh SW, Kim SJ, Myoung J. 2019. Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication. Sci. Rep. 9: 2372. https://doi.org/10.1038/s41598-019-38870-7
  16. Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon sresponses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
  17. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
  18. Baek YH, Cheon HS, Park SJ, Lloren KKS, Ahn SJ, Jeong JH, et al. 2018. Simple, rapid and sensitive portable molecular diagnosis of SFTS virus using reverse transcriptional loopmediated isothermal amplification (RT-LAMP). J. Microbiol. Biotechnol. 28: 1928-1936. https://doi.org/10.4014/jmb.1806.06016
  19. Phuong NH, Kwak C, Heo CK, Cho EW, Yang J, Poo H. 2018. Development and characterization of monoclonal antibodies against nucleoprotein for diagnosis of influenza A virus. J. Microbiol. Biotechnol. 28: 809-815. https://doi.org/10.4014/jmb.1801.01002
  20. Tong C, Chen N, Liao X, Yuan X, Sun M, Li X, et al. 2017. Continuous p assaging o f a r ecombinant C-strain v irus in PK-15 cells selects culture-adapted variants that showed enhanced replication but failed to induce fever in rabbits. J. Microbiol. Biotechnol. 27: 1701-1710. https://doi.org/10.4014/jmb.1704.04065
  21. Xi H, Zhang K, Yin Y, Gu T, Sun Q, Shi L, et al. 2017. Fusion peptide improves stability and bioactivity of single chain antibody against rabies virus. J. Microbiol. Biotechnol. 27: 718-724. https://doi.org/10.4014/jmb.1611.11062
  22. Zhao K, Duan X, Hao L, Wang X, Wang Y. 2017. Immune effect of newcastle disease virus DNA vaccine with C3d as a molecular adjuvant. J. Microbiol. Biotechnol. 27: 2060-2069. https://doi.org/10.4014/jmb.1708.08017
  23. Lee JY, Lee JS, Materne EC, Rajala R, Ismail AM, Seto D, et al. 2018. Bacterial RecA protein promotes adenoviral recombination during in vitro infection. mSphere 3. pii: e00105-18.
  24. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
  25. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
  26. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
  27. Collins SE, Noyce RS, Mossman KL. 2004. Innate cellular response to virus particle entry requires IRF3 but not virus replication. J. Virol. 78: 1706-1717. https://doi.org/10.1128/JVI.78.4.1706-1717.2004
  28. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347: aaa2630. https://doi.org/10.1126/science.aaa2630
  29. Sun G, Larsen CN, Baumgarth N, Klem EB, Scheuermann RH. 2017. Comprehensive annotation of mature peptides and genotypes for Zika virus. PLoS One 12: e0170462. https://doi.org/10.1371/journal.pone.0170462
  30. Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3: 13-22. https://doi.org/10.1038/nrmicro1067
  31. Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, et al. 2014. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343: 881-885. https://doi.org/10.1126/science.1247749
  32. Wu Y, Liu Q, Zhou J, Xie W, Chen C, Wang Z, et al. 2017. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov. 3: 17006.
  33. Xia H, Luo H, Shan C, Muruato AE, Nunes BTD, Medeiros DBA, et al. 2018. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9: 414. https://doi.org/10.1038/s41467-017-02816-2
  34. Zhang X, Xie X, Zou J, Xia H, Shan C, Chen X, et al. 2019. Genetic and biochemical characterizations of Zika virus NS2A protein. Emerg. Microbes Infect. 8: 585-602. https://doi.org/10.1080/22221751.2019.1598291
  35. Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA. 2008. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol. 82: 4731-4741. https://doi.org/10.1128/JVI.00002-08
  36. Liu WJ, Chen HB, Khromykh AA. 2003. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for an onconservative residue in NS3 in RNA replication. J. Virol. 77: 7804-7813. https://doi.org/10.1128/JVI.77.14.7804-7813.2003
  37. Marquez-Jurado S, Nogales A, Avila-Perez G, Iborra FJ, Martinez-Sobrido L, Almazan F. 2018. An alanine-to-valine substitution in the residue 175 of Zika virus NS2A protein affects viral RNA synthesis and attenuates the virus in vivo. Viruses 10(10). pii: E547
  38. Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A. 2003. Inhibition of interferon signaling by dengue virus. Proc. Natl. Acad. Sci. USA 100: 14333-14338. https://doi.org/10.1073/pnas.2335168100
  39. Tu YC, Yu CY, Liang JJ, Lin E, Liao CL, Lin YL. 2012. Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J. Virol. 86: 10347-10358. https://doi.org/10.1128/JVI.00525-12
  40. Xie X, Zou J, Puttikhunt C, Yuan Z, Shi PY. 2015. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol. 89: 1298-1313. https://doi.org/10.1128/JVI.02882-14
  41. Wang CC, Huang ZS, Chiang PL, Chen CT, Wu HN. 2009. Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett. 583: 691-696. https://doi.org/10.1016/j.febslet.2009.01.008
  42. Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R. 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem. 282: 8873-8882. https://doi.org/10.1074/jbc.M609919200
  43. Ambrose RL, Mackenzie JM. 2011. A conserved peptide in West Nile virus NS4A protein contributes to proteolytic processing and is essential for replication. J. Virol. 85: 11274-11282. https://doi.org/10.1128/JVI.05864-11
  44. Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, et al. 2018. Zika virus non-structural protein 4A blocks the RLR-MAVS signaling. Front Microbiol. 9: 1350. https://doi.org/10.3389/fmicb.2018.01350
  45. Li XD, Ye HQ, Deng CL, Liu SQ, Zhang HL, Shang BD, et al. 2015. Genetic interaction between NS4A and NS4B for replication of Japanese encephalitis virus. J. Gen. Virol. 96: 1264-1275. https://doi.org/10.1099/vir.0.000044
  46. Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, et al. 2016. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19: 663-671. https://doi.org/10.1016/j.stem.2016.07.019
  47. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. 2002. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21: 2757-2768. https://doi.org/10.1093/emboj/21.11.2757
  48. Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, et al. 2009. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15: 2340-2350. https://doi.org/10.1261/rna.1609709
  49. Dong H, Fink K, Zust R, Lim SP, Qin CF, Shi PY. 2014. Flavivirus RNA methylation. J. Gen. Virol. 95: 763-778. https://doi.org/10.1099/vir.0.062208-0
  50. Ivashkiv LB, Donlin LT. 2014. Regulation of type I interferon responses. Nat. Rev. Immunol. 14: 36-49. https://doi.org/10.1038/nri3581
  51. Taniguchi T, Takaoka A. 2002. The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol. 14: 111-116. https://doi.org/10.1016/S0952-7915(01)00305-3
  52. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  53. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
  54. Brisse M, Ly H. 2019. Comparative structure and function analysis of the RIG-I-Like receptors: RIG-I and MDA5. Front Immunol. 10: 1586. https://doi.org/10.3389/fimmu.2019.01586
  55. Hu Y, Dong X, He Z, Wu Y, Zhang S, Lin J, et al. 2019. Zika virus antagonizes interferon response in patients and disrupts RIG-I-MAVS interaction through its CARD-TM domains. Cell Biosci. 9: 46. https://doi.org/10.1186/s13578-019-0308-9
  56. Li W, Li N, Dai S, Hou G, Guo K, Chen X, et al. 2019. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA. FASEB J. 33: 9929-9944. https://doi.org/10.1096/fj.201900260R
  57. Kumar A, Hou S, Airo AM, Limonta D, Mancinelli V, Branton W, et al. 2016. Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep. 17: 1766-1775. https://doi.org/10.15252/embr.201642627

Cited by

  1. Middle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors by a Differential Mechanism vol.29, pp.12, 2019, https://doi.org/10.4014/jmb.1911.11024
  2. The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response vol.8, pp.3, 2020, https://doi.org/10.3390/vaccines8030530
  3. Zika virus NS2A inhibits interferon signaling by degradation of STAT1 and STAT2 vol.12, pp.1, 2019, https://doi.org/10.1080/21505594.2021.1935613
  4. LAMR1 restricts Zika virus infection by attenuating the envelope protein ubiquitination vol.12, pp.1, 2019, https://doi.org/10.1080/21505594.2021.1948261
  5. Zika Virus Pathogenesis: A Battle for Immune Evasion vol.9, pp.3, 2019, https://doi.org/10.3390/vaccines9030294
  6. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors vol.10, pp.4, 2019, https://doi.org/10.3390/pathogens10040448
  7. Bovine viral diarrhea virus NS4B protein interacts with 2CARD of MDA5 domain and negatively regulates the RLR-mediated IFN-β production vol.302, 2019, https://doi.org/10.1016/j.virusres.2021.198471
  8. Roles of Non-Structural Protein 4A in Flavivirus Infection vol.13, pp.10, 2019, https://doi.org/10.3390/v13102077