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The ocean environment covers 70% of the Earth’s surface

and has more diverse conditions than the terrestrial

environment, such as low oxygen and lack of light [1, 2].

Under these conditions, biosynthesis of secondary

metabolites typically involves mechanisms modified for

physiological adaptation, which increases the probability

that unusual natural products might be present [3, 4]. In

the last decade, numerous natural products have been

discovered in the marine environment; notably, thousands

of those compounds exhibit new structures, and three-

fourths of them demonstrate diverse bioactivities [5].

Marine-derived Streptomyces species have been identified

as major producers of novel antibiotics, such as

branimycins B and C [6]; ansalactams B, C, and D [7];

desotamide B [8]; and lobophorin H [9]. Thus, marine-

derived Streptomyces species could be outstanding sources

of novel antimicrobial agents.

Sortases, transpeptidases that anchor surface proteins to

the peptidoglycan layer in gram-positive bacteria, have

attracted attention as a potential target of novel antibiotics

[10]. Surface proteins covalently tethered to the cell wall by

sortases allow gram-positive bacteria to adhere to host

tissues and to invade epithelial cells [11, 12]. Sortases

comprise six isoforms, A–F (SrtA–F). Among them, SrtA

has been shown to play an important role in the

pathogenesis of S. aureus via gene knockout experiments

[13, 14]. Indeed, S. aureus mutants lacking SrtA were

limited in their abilities to make biofilms and infect host

cells maintaining cell viability. The effective

pharmacophores against SrtA were recently researched

and morpholino benzoate, thiazolidine derivatives were

identified as promising SrtA inhibitors [15-17]. 

In our search for SrtA inhibitors in marine-derived

Actinomycetes, we found that an ethyl acetate extraction of

Streptomyces strain MBTH32 exhibited moderate activity

against S. aureus SrtA (IC50 = 64.27 μg/ml). Stepwise

separation of the crude extract using various

chromatography methods yielded three compounds with
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Sortase A (SrtA), a type of transpeptidase responsible for anchoring surface proteins to the

peptidoglycan cell wall, is important in the virulence of gram-positive bacteria. Three

compounds were isolated from marine-derived Streptomyces sp. MBTH32 using various

chromatography techniques. The structures of these compounds were determined based on

spectroscopic data and comparisons with previously reported data. Among the metabolites

tested, lumichrome showed strong inhibitory activity against Staphylococcus aureus SrtA

without affecting cell viability. The results of cell clumping activity assessment suggest the

potential for using this compound to treat S. aureus infection by inhibiting SrtA activity.

Keywords: Marine Streptomyces, lumichrome, Staphylococcus aureus, sortase A, cell clumping



1604 Chung et al.

J. Microbiol. Biotechnol.

SrtA inhibitory activity. The structures of these compounds

were determined by extensive spectroscopic analyses.

Herein we report the potential of these compounds for

inhibition of SrtA and SrtA-mediated cell clumping in

S. aureus.

Strain MBTH32 was isolated from marine sediment from

Shinjin Island, Republic of Korea; it showed 98% identity to

Streptomyces longispororuber and was therefore designated

Streptomyces sp. MBTH32 (GenBank accession number:

MK840992). Strain MBTH32 was cultured in yeast–

peptone–mannitol (YPM) medium (2 g yeast extract, 2 g

peptone, 4 g mannitol, and 23 g sea salt in 1 L distilled

water) at 28°C for 7 days on a rotary shaker. It was then

filtered and extracted with an equal volume of ethyl

acetate; this was performed twice. The ethyl acetate

fraction was incrassated and 1.6 g of dried material was

obtained for biological and chemical assays. The entire

extract was separated by C18 reversed-phase vacuum flash

column chromatography using serial dilutions of methanol

and water as eluents. Based on the results of the SrtA

inhibition assay, the fraction eluted in 20% aqueous

methanol was isolated by reversed-phase high-

performance liquid chromatography (Agilent Eclipse XDB-

C18, 5 μm, 9.4 × 250 mm) to yield compounds 1–3. A total of

14.6 mg, 3.6 mg, and 3.5 mg of compounds 1, 2, and 3 were

purified. The structures of these compounds, designated as

enterocin (1) [18], N-acetyl-β-oxotryptamine (2) [19], and

lumichrome (3) [20], were determined based on the results

of spectroscopic analyses and comparisons with previously

reported data (Fig. 1).

Recombinant SrtA was purified from transformed

Escherichia coli by nickel-based affinity chromatography

[21]. Inhibitory activity against SrtA was determined by

quantifying the intensity of augmented fluorescence upon

cleavage of a synthetic peptide containing LPETG motifs.

Fluorescence induced from tested compounds was

excluded to avoid interference with substrate [22, 23]. SrtA

suppression abilities of isolated compounds and berberine

chloride, a known SrtA inhibitor [24], were estimated with

IC50 values (half maximal inhibitory concentrations)

(Table 1). Compounds 1 and 2 exhibited weak SrtA

inhibitory activity. In contrast, compound 3 significantly

inhibited SrtA, with an IC50 value of 198.20 μM. SrtA

inhibitors that do not hinder microbial viability are

considered to be more valuable therapeutic agents [25].

Therefore, we investigated the efficacies of these three

compounds on bacterial growth using the minimum

inhibitory concentration assay [26]. As shown in Table 1,

compounds 2 and 3 displayed no growth inhibition activity

against S. aureus. However, the inhibition pattern of

Fig. 1. Structures of compounds 1–3 isolated from marine-

derived Streptomyces sp. MBTH32: enterocin (1), N-acetyl-β-

oxotryptamine (2), and lumichrome (3).

Table 1. Inhibitory effects of compounds 1–3 on the activity of

SrtA and bacterial growth of S. aureus ATCC6538p.

Compound
IC50 (μM) MIC (μM)

SrtA S. aureus ATCC6538p

1 594.76 ± 3.78 9.00

2 1108.65 ± 7.52 >1185.19

3 198.20 ± 0.94 >528.42

Berberine chloride 106.40 ± 1.36 >344.26

Berberine chloride was used as a reference inhibitor of SrtA. IC50 values are the

mean ± SD (n = 3).

Fig. 2. Lineweaver-Burk plot of SrtA inhibition by compound 3.

Compound 3 was applied at IC50 and at 2× IC50 concentrations. [S],

reaction substrate concentration; V, reaction velocity (Δfluorescence/

min). Each point indicates the mean ± SD of three independent

experiments.
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compound 3, as determined using the Lineweaver-Burk

plot method [27] (Ki = 0.91 mM), indicated that it served as

a competitive inhibitor (Fig. 2).

SrtA has been reported to immobilize fibrinogen-binding

protein, thus accelerating bacterial adhesion to host tissues

and subsequent invasion [28, 29]. We hypothesized that the

immobilization of fibrinogen-binding protein may be

reduced by suppression of SrtA activity in vivo. To confirm

our assumption, S. aureus Newman (wild-type) and SKM12

(srtA-) strains were used in SrtA-mediated cell clumping to

fibrinogen [30]. Cells were centrifuged and resuspended

with fibrinogen solution. Absorbance at 600 nm was

measured for each sample at 0 h and 2 h after resuspension.

The data are shown as the absorbance (mean ± SD, three

independent experiments) at 2 h, divided by absorbance at

time zero, multiplied by 100. Whereas the wild-type strain

showed >70% reduction in absorbance at 600 nm after 2 h

incubation, the srtA-knockout mutant only showed 20%

reduction in absorbance after a similar period of

incubation; this indicates that SrtA plays a crucial role in

anchoring the clumping factor to the cell wall (Fig. 3A). The

clumping abilities of the wild-type strain treated with

various concentrations of compound 3 were also measured

and compared with its clumping ability when treated with

berberine chloride. The ability of the wild-type strain to

develop SrtA-mediated clumps was reduced in a dose-

dependent manner upon treatment with compound 3. In

particular, the absorbance of a sample treated with 100 μM

compound 3 for 2 h was estimated to be 60% of the initial

value, which was slightly lower than the absorbance when

treated with an outstanding inhibitor, berberine chloride

(Fig. 3B). These data suggest that compound 3 directly

targets SrtA and decreases pathogenicity by inhibiting

covalent linkage of surface proteins to the peptidoglycan

layer in S. aureus.

In conclusion, three metabolites isolated from marine-

derived Streptomyces sp. MBTH32 displayed inhibitory

activity against S. aureus SrtA. Among them, lumichrome

(compound 3) showed the greatest activity against SrtA

without affecting microbial growth. The SrtA-mediated

clumping assay demonstrated that SrtA is responsible for

covalent linkage of surface proteins to the cell wall. It also

indicated that compound 3 may be useful in the treatment

of S. aureus infections by inhibiting the anchoring ability of

SrtA. These findings may be valuable for novel antibiotic

research and may facilitate studies of structure-related

activities among similar SrtA inhibitors.
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