DOI QR코드

DOI QR Code

A Gene Cluster for the Biosynthesis of Dibenzodioxocinons in the Endophyte Pestalotiopsis microspora, a Taxol Producer

  • Liu, Yanjie (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University) ;
  • Chen, Longfei (Zhejiang Medicine Co., Ltd.) ;
  • Xie, Qiaohong (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University) ;
  • Yu, Xi (Department of Microbiology, College of Life Sciences, Nankai University) ;
  • Duan, Anqing (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University) ;
  • Lin, Yamin (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University) ;
  • Xiang, Biyun (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University) ;
  • Hao, Xiaoran (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University) ;
  • Chen, Wanwan (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University) ;
  • Zhu, Xudong (Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University)
  • Received : 2019.05.22
  • Accepted : 2019.08.28
  • Published : 2019.10.28

Abstract

The fungal products dibenzodioxocinones promise a novel class of inhibitors against cholesterol ester transfer protein (CEPT). Knowledge as to their biosynthesis is scarce. In this report, we characterized four more dibenzodioxocinones, which along with a previously described member pestalotiollide B, delimit the dominant spectrum of secondary metabolites in P. microspora. Through mRNA-seq profiling in $g{\alpha}1{\Delta}$, a process that halts the production of the dibenzodioxocinones, a gene cluster harboring 21 genes including a polyketide synthase, designated as pks8, was defined. Disruption of genes in the cluster led to loss of the compounds, concluding the anticipated role in the biosynthesis of the chemicals. The biosynthetic route to dibenzodioxocinones was temporarily speculated. This study reveals the genetic basis underlying the biosynthesis of dibenzodioxocinone in fungi, and may facilitate the practice for yield improvement in the drug development arena.

Keywords

References

  1. Kawahara T, Itoh M, Izumikawa M, Sakata N, Tsuchida T, Shin-ya K. 2013. Three eremophilane derivatives, MBJ-0011, MBJ-0012 and MBJ-0013, from an endophytic fungus Apiognomonia sp. f24023. J. Antibiot. 66: 299-302. https://doi.org/10.1038/ja.2013.13
  2. Lin ZJ, Z hu TJ, F ang YC, Gu QQ, Zhu WM. 2008. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69: 1273-1278. https://doi.org/10.1016/j.phytochem.2007.10.030
  3. Challinor VL, Bode HB. 2015. Bioactive natural products from novel microbial sources. Ann. NY Acad. Sci. 1354: 82-97. https://doi.org/10.1111/nyas.12954
  4. Hu Y , Zhou YX, Mao ZJ, Li HH, Chen FS, Shao YC. 2017. $NAD^+$-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin. AMB Express 7: 116. https://doi.org/10.1186/s13568-017-0413-2
  5. Xu J, Kjer J, Sendker J, Wray V, Guan HS, Edrada RA, et al. 2009. Chromones from the endophytic fungus Pestalotiopsis sp. Isolated from the Chinese mangrove plant Rhizophora mucronata. J. Nat. Prod. 72: 662-665. https://doi.org/10.1021/np800748u
  6. David AG, Jonathan G, Alex M, Ana R, Inaki RT, Roger ES. 2016. Sterol and genomic analyses validate the sponge biomaker hypothesis. PNAS 113: 2684-2689. https://doi.org/10.1073/pnas.1512614113
  7. Edilu A, Adane L, Woyessa D. 2015. In vitro antibacterial activities of compounds isolated from roots of Caylusea abyssinica. Ann. Clin. Microbiol. Antimicrob. 14: 15. https://doi.org/10.1186/s12941-015-0072-6
  8. Bruckner D, Hafner FT, Li V, Schmeck C, Telser J, Vakalopoulos A, et al. 2005. Dibenzodioxocinones-A new class of CETP inhibitors. Bioorg. Med. Chem. Lett. 15: 3611-3614. https://doi.org/10.1016/j.bmcl.2005.05.073
  9. Niu XL , Hao XR, Hong ZY, Chen LF, Yu X, Zhu XD. 2015. A putative histone deacetylase modulates the biosynthesis of Pestalotiollide B and conidiation in Pestalotiopsis microspora. J. Microbiol. Biotechnol. 25: 579-588. https://doi.org/10.4014/jmb.1409.09067
  10. Liu L, Li Y, Cao Y, Guo LD, Liu G, Che YS. 2013. Spiroketals of Pestalotiopsis fici provide evidence for a biosynthetic hypothesis involing diversified Diels-Alder reaction cascades. J. Org. Chem. 78: 2992-3000. https://doi.org/10.1021/jo302804h
  11. Yang XL, Awakawa T, Wakimoto T, Abe I. 2013. Induced production of novel prenyldepside and coumarins in endophytic fungi Pestalotiopsis acaciae. Tetrahedron Lett. 54: 5814-5817. https://doi.org/10.1016/j.tetlet.2013.08.054
  12. Kawamura H, Kaneko T, Koshino H, Esumi Y, Uzawa J, Sugawara F. 2000. Penicillides from Penicillium sp. isolated from Taxus cuspidata. Nat. Prod. Lett. 14: 477-484. https://doi.org/10.1080/10575630008043788
  13. Kuroda K, Morishita Y, Saito Y, Ikuina Y, Ando K, Kawamoto I, et al. 1994. AS-186 compounds, new inhibitors of acyl-CoA : cholesterol acyltransferase from Penicillium asperosporum KYI 635. J. Antibiot. 47: 16-22. https://doi.org/10.7164/antibiotics.47.16
  14. Zhang Y , Li XM, Shang Z, Li CS, Ji NY, Wang BG. 2012. Meroterpenoid and diphenyl ether derivatives from Penicillium sp. MA-37, a fungus isolated from marine mangrove rhizospheric soil. J. Nat. Prod. 75: 1888-1895. https://doi.org/10.1021/np300377b
  15. Bi JN, Ji Y, Pga1n J, Yu Y, Chen H, Zhu XD. 2011. A new taxol-producing fungus (Pestalotiopsis malicola) and evidence for taxol as a transient product in the culture. Afr. J. Biotechnol. 10: 6647-6654.
  16. Strbel G, Yang XS, Sears J, Kramer R, Sidhu RS, Hess W.M. 1996. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiol. 142: 435-440. https://doi.org/10.1099/13500872-142-2-435
  17. Chen LF, Li YY, Zhang Q, Wang D, Akhberdi O, Wei DS, et al. 2017. Improved pestalotiollide B production by deleting competing polyketide synthase genes in Pestalotiopsis microspora. J. Ind. Microbiol. Biotechol. 44: 237-246. https://doi.org/10.1007/s10295-016-1882-z
  18. Yu X, Liu H, Niu XL, Akhberdi O, Wei DS, Wang D, et al. 2017. The $G{\alpha}1$-cAMP signaling pathway controls conidiation, development and secondary metabolism in the taxolproducing fungus Pestalotiopsis microspora. Microbiol. Res. 203: 29-39. https://doi.org/10.1016/j.micres.2017.06.003
  19. Yu X, H uo L , L iu H , Chen L F, W ang Y, Z hu XD. 2015. Melanin is required for the formantion of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiol. Res. 179: 1-11. https://doi.org/10.1016/j.micres.2015.06.004
  20. Wang D, Akhberdi O, Hao XR, Chen LF, Liu YJ, Zhu XD. 2017. Amino acid sensor kinase Gcn2 is required for conidiation, secondary metabolism, and cell wall integrity in the Taxol-producer Pestalotiopsis microspora. Front Microbiol. 8: 1879. https://doi.org/10.3389/fmicb.2017.01879
  21. Ishida T, Bounds SVJ, Caldwell J, Drake A, Takeshita M. 1996. The absolute configuration of the four stereoisomers of trans-anethole diol (1-(4''-Methoxyphenyl)-l,2-propanediol), a metabolite of anethole in the rat. Tetrahedron Asymmetry 7: 3113-3118. https://doi.org/10.1016/0957-4166(96)00411-9
  22. Xu XX, Liu L, Zhang F, Wang WZ, Li JY, Guo LD, et al. 2014. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici. Chembiochem 15: 284-292. https://doi.org/10.1002/cbic.201300626
  23. Chiang YM, Szewczyk E, Davidson AD, Entwistle R, Keller NP, Wang CCC, et al. 2010. Characterization of the Aspergillus nidulans Monodictyphenone Gene Cluster. Appl. Environ. Microbiol. 76: 2067-2074. https://doi.org/10.1128/AEM.02187-09
  24. Awakawa T, Yokota K, Funa N, Doi F, Mori N, Watanabe H, et al. 2009. Physically discrete $\beta$-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase. Chem. Biol. 16: 613-623. https://doi.org/10.1016/j.chembiol.2009.04.004
  25. Crawford JM, Thomas PM, Scheerer JR, Vagstad AL, Kelleher NL, Townsend CA. 2008. Deconstruction of iterative multidomain polyketide synthase function. Science 320: 243-246. https://doi.org/10.1126/science.1154711
  26. Cary JW, Ehrlich KC, Bland JM, Montalbano BG. 2006. The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of versicolorin A to demethylsterigmatocystin. Appl. Environ. Microbiol. 72: 1096-1101. https://doi.org/10.1128/AEM.72.2.1096-1101.2006
  27. Fujii I, Iijima H, Tsukita S, Ebizuka Y, Sankawa U. 1987. Purification and properties of dihydrogeodin oxidase from Aspergillus terreus. J. Biochem. 101: 11-18. https://doi.org/10.1093/oxfordjournals.jbchem.a121881
  28. Sasaki K, Mito K, Ohara K, Yamamoto H, Yazaki K. 2008. Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens. Plant Physiol. 146: 1075-1084. https://doi.org/10.1104/pp.107.110544
  29. Akashi T, Sasaki K, Aoki T, Ayabe S, Yazaki K. 2009. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol. 149: 683-693. https://doi.org/10.1104/pp.108.123679