References
- Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW. Allelic variation in human gene expression. Science 2002;297:1143.10.1126/science.1072545
- McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984;37:179-83. https://doi.org/10.1016/0092-8674(84)90313-1
- Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. Widespread monoallelic expression on human autosomes. Science 2007;318:1136-40. https://doi.org/10.1126/science.1148910
- Gaur U, Li K, Mei S, Liu G. Research progress in allele-specific expression and its regulatory mechanisms. J Appl Genet 2013;54:271-83. https://doi.org/10.1007/s13353-013-0148-y
- Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Ig f2. Genes Dev 1998;12:3693-702. https://doi.org/10.1101/gad.12.23.3693
- Jirtle RL. Imprinted gene database [Internet]. c1995 [cited 2018 Jan 22]. Available from: http://www.geneimprint.com.
- Bischoff SR, Tsai S, Hardison N, et al. Characterization of conserved and nonconserved imprinted genes in swine. Biol Reprod 2009;81:906-20. https://doi.org/10.1095/biolreprod.109.078139
- de Koning D-J, Rattink AP, Harlizius B, van Arendonk JAM, Brascamp EW, Groenen MAM. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA 2000;97:7947-50. https://doi.org/10.1073/pnas.140216397
- Choi M, Lee J, Le MT, et al. Genome-wide analysis of DNA methylation in pigs using reduced representation bisulfite sequencing. DNA Res 2015;22:343-55. https://doi.org/10.1093/dnares/dsv017
- Kim W, Park H, Seo K-S, Seo S. Characterization and functional inferences of a genome-wide DNA methylation profile in the loin (longissimus dorsi) muscle of swine. Asian-Australas J Anim Sci 2018;31:3-12. https://doi.org/10.5713/ajas.16.0793
- Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 2014;30:2843-51. https://doi.org/10.1093/bioinformatics/btu356
- Gregg C, Zhang J, Weissbourd B, et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 2010;329:643-8. https://doi.org/10.1126/science.1190830
- Pinter SF, Colognori D, Beliveau BJ, et al. Allelic imbalance is a prevalent and tissue-specific feature of the mouse transcriptome. Genetics 2015;200:537-49. https://doi.org/10.1534/genetics.115.176263
- Oczkowicz M, Szmatola T, Piorkowska K, Ropka-Molik K. Variant calling from RNA-seq data of the brain transcriptome of pigs and its application for allele-specific expression and imprinting analysis. Gene 2018;641:367-75. https://doi.org/10.1016/j.gene.2017.10.076
- Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589-95. https://doi.org/10.1093/bioinformatics/btp698
- Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078-9. https://doi.org/10.1093/bioinformatics/btp352
- Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635
- Poplin R, Ruano-Rubio V, DePristo MA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 2018;201178. https://doi.org/10.1101/201178
- Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29:308-11. https://doi.org/10.1093/nar/29.1.308
- Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012;6:80-92. https://doi.org/10.4161/fly.19695
- Ruden D, Cingolani P, Patel V, et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet 2012;3:35. https://doi.org/10.3389/fgene.2012.00035
- Woolf B. The log likelihood ratio test (the G-test). Ann Hum Genet 1957;21:397-409. https://doi.org/10.1111/j.1469-1809.1972.tb00293.x
- Groenen MAM, Archibald AL, Uenishi H, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012;491:393-8. https://doi.org/10.1038/nature11622
- Wang X, Clark AG. Using next-generation RNA sequencing to identify imprinted genes. Heredity 2014;113:156-66. https://doi.org/10.1038/hdy.2014.18
- Kleinman CL, Majewski J. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science 2012;335:1302. https://doi.org/10.1126/science.1209658
- Ip W-K, Lai PBS, Wong NLY, et al. Identification of PEG10 as a progression related biomarker for hepatocellular carcinoma. Cancer Lett 2007;250:284-91. https://doi.org/10.1016/j.canlet.2006.10.012
- Edsgard D, Iglesias MJ, Reilly S-J, et al. GeneiASE: Detection of condition-dependent and static allele-specific expression from RNA-seq data without haplotype information. Sci Rep 2016;6:21134. https://doi.org/10.1038/srep21134
- Broer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 2006;48:559-67. https://doi.org/10.1016/j.neuint.2005.11.021
- Della Valle MC, Sleat DE, Sohar I, et al. Demonstration of lysosomal localization for the mammalian ependymin-related protein using classical approaches combined with a novel density shift method. J Biol Chem 2006;281:35436-45. https://doi.org/10.1074/jbc.M606208200
- Raemaekers T, Ribbeck K, Beaudouin J, et al. NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization. J Cell Biol 2003;162:1017-29. https://doi.org/10.1083/jcb.200302129
- Schadt EE, Monks SA, Drake TA, et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003;422:297-302. https://doi.org/10.1038/nature01434
- Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M. Liprins, a family of LAR transmembrane protein-tyrosine phosphataseinteracting proteins. J Biol Chem 1998;273:15611-20. https://doi.org/10.1074/jbc.273.25.15611
Cited by
- Genome-wide identification of imprinted genes in pigs and their different imprinting status compared with other mammals vol.41, 2019, https://doi.org/10.24272/j.issn.2095-8137.2020.072