DOI QR코드

DOI QR Code

A Study on the Integration Costs in Korean Electric System in Accordance with Increasing Solar and Wind Power Generation

태양광·풍력 발전 증가에 따른 한국의 전력시스템 내 통합비용에 관한 연구

  • Received : 2019.08.02
  • Accepted : 2019.09.16
  • Published : 2019.09.30

Abstract

The solar and wind power is spreading as a means to $CO_2$ reduction, but it has the characteristics of the volatility depending on the weather changes. This article aims to estimate the additional integration costs in Korea electric system in response to such volatility of increasing solar and wind power generation, using Korea electric power trading analyzer(KEPTA). The analysis utilizes the statistics of "8th Basic Plan for Long-term Electricity Supply and Demand" and "Renewable Energy Plan 3020". As the results, integration costs will be estimated 13.94Won/kWh~32.55Won/kWh, consisting of 8.94Won/kWh as back-up costs, 1.03Won/kWh~4.45Won/kWh as balancing costs, and 3.97Won/kWh~19.16Won/kWh as grid-costs. These results suggest that when the integration costs are secured, Korea electric system will be expected in the stable situation. This article leaves the further studies with taking the technological development of solar and wind power generation, the introduction of energy storage system, and wholesale price of electricity into consideration.

태양광 풍력 발전은 한국의 에너지 전환에 있어서 핵심적인 요소이다. 특히 이산화탄소 감축과 미세먼지 저감을 위해서 태양광 풍력 발전 확대 보급은 정책적으로나, 사회적으로 필수 불가결한 선택이다. 이에 본 논문은 태양광 풍력 확대에 대응하여 한국 전력시스템 내에서 추가적으로 발생하는 비용, 즉 통합 비용에 대해 분석하고자 한다. 2019년~2030년에 걸친 "8차 전력수급기본계획", "재생에너지3020 이행계획"과 2016년 태양광 풍력 발전량을 기반으로 KEPTA를 활용하여 시나리오 분석한 결과, 2030년 13.94Won/kWh~32.55Won/kWh의 통합비용이 필요하며, 백업비용은 8.94Won/kWh, 균형비용은 1.03Won/kWh~4.45Won/kWh, 계통접속비용은 3.97Won/kWh~19.16Won/kWh가 필요한 것으로 나타났다. 이러한 추가 비용이 확보될 때 태양광 풍력 발전의 확대를 위한 전력시스템 내 안정성이 확보될 것으로 예상한다. 향후 태양광 풍력 발전의 기술 개발과 전력저장장치 도입, 그리고 도매시장 가격 변화 등을 고려한 연구가 필요하다.

Keywords

References

  1. Ahn, I. H, et al., 2014. An Empirical Analysis of the System Marginal Price Volatility in the Korean Electricity Wholesale Market Korea Energy Economic Review, Vol. 13(2) pp. 103-129.
  2. Bae, C. Y., 2018, A Study on the ICT-based Benefit Improvement of the Chung-ju Multipurpose Dam for Climate Change, Korean Soc Environ Eng, Vol. 40(8), pp. 303-313. https://doi.org/10.4491/KSEE.2018.40.8.303
  3. Belanger Camille., et al., 2002, Adding wind energy to hydropower, Energy Policy, Vol. 30(14) pp. 1279-1284. https://doi.org/10.1016/S0301-4215(02)00089-7
  4. Bakun, A., and C. S. Nelson, 1991, The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. Phys. Oceanogr, 21, pp. 1815-834 https://doi.org/10.1175/1520-0485(1991)021<1815:TSCOWS>2.0.CO;2
  5. Brown, T. W., et al., 2018, Response to 'Bur-den of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems., Renewable and Sustainable Energy Reviews, 92, pp. 834-847 https://doi.org/10.1016/j.rser.2018.04.113
  6. Bruninx, K., et al., 2016, Determining the impact of renewable energy on balancing costs, back up Costs, Grid Costs and subsidies, KU Leuven, pp. 1-74
  7. Chandler, H. 2011, Harnessing Variable Renewables - A Guide to the Balancing Challenge, IEA, pp. 81-90, 189-202
  8. Csereklyei, Z., Qu, S., & Ancev, T., 2019, The effect of wind and solar power generation on wholesale electricity prices in Australia. Energy Policy, Vol. 131, pp. 358-369. https://doi.org/10.1016/j.enpol.2019.04.007
  9. Heard B., et al., 2017, Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable Sustainable Energy Reviews, Vol. 76, pp. 1122-33. https://doi.org/10.1016/j.rser.2017.03.114
  10. Hirth, L. 2013. The market value of variable renewables. The effect of solar wind power variability on their relative price, Energy Economics, Vol. 38, pp. 218-236. https://doi.org/10.1016/j.eneco.2013.02.004
  11. Hirth, L., Ueckerdt, F., & Edenhofer, O., 2015, Integration Costs revisited - An economic framework for wind and solar variability. Renewable Energy, Vol. 74, pp. 925-939 https://doi.org/10.1016/j.renene.2014.08.065
  12. Holttinen, Hannele, et al., 2011, Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration, Wind Energy, Vol. 14, No. 2, pp. 179-192. https://doi.org/10.1002/we.410
  13. Jeon, W. Y., and Mo, J. Y., 2017, The Economic Cost of Wind Uncertainty : The case of Jeju Island New & Renewable, Energy Vol. 13, No. 2, pp. 21-29
  14. Kim, E. H., Park, Y. G., & Roh, J. H., 2019, Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix, Energy Policy, 129(March), pp. 1056-1069 https://doi.org/10.1016/j.enpol.2019.03.014
  15. Lee, H. S, et al., 2017, Study of social cost by expanding renewable energy, MOTIE, pp. 34-42
  16. Matthew, W, et al., 2015, Projected Costs of Generating Electricity, IEA, pp 154-196.
  17. Mount, Timothy, et al., 2010, The Hidden System Costs of Wind Generation in a Deregulated Electricity Market Energy Journal, Vol. 33. pp. 1-10
  18. Milligan, Michael, et al., 2010, Operating reserves and wind power integration: An international comparison, NREL, pp 8-14
  19. Nayar, C. V., et al., 1993, Novel wind/diesel/battery hybrid energy system, Solar energy, Vol. 51.1 pp. 65-78. https://doi.org/10.1016/0038-092X(93)90043-N
  20. Notton, G, et al., 2018, Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting, Renewable and Sustainable Energy Reviews 87, pp. 96-1051 https://doi.org/10.1016/j.rser.2018.02.007
  21. Pietzcker, R. C., et al. 2017, System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches., Energy Economics, Vol. 64 pp. 583-599. https://doi.org/10.1016/j.eneco.2016.11.018
  22. Simshauser P., 2009, The hidden Costs of wind generation in a thermal power system: what cost?, Australian Economic Review, Vol. 44, No. 3, pp. 269-292 https://doi.org/10.1111/j.1467-8462.2011.00646.x
  23. Sinn, H. W., 2017, Buffering volatility: A study on the limits of Germany's energy revolution, European Economic Review, 99, pp. 130-150 https://doi.org/10.1016/j.euroecorev.2017.05.007
  24. Ueckerdt, F., et al., 2013, System LCOE: What are the Costs of variable renewables?, Energy, Vol. 63, pp. 61-75 https://doi.org/10.1016/j.energy.2013.10.072
  25. Ueckerdt, F., et al., 2015. Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves, Energy, Vol. 90, pp. 1799-1814. https://doi.org/10.1016/j.energy.2015.07.006
  26. Warren, K., & Jay, A., 2012. The cost of wind power variability. Energy Policy, Vol. 51, pp. 233-243. https://doi.org/10.1016/j.enpol.2012.07.032