Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities, Northeastern University
References
- Alonso, G. and Meseguer, J. (2006), "A parametric study of the galloping stability of two-dimensional triangular cross-section bodies", J. Wind Eng. Ind. Aerod., 94(4), 241-253. https://doi.org/10.1016/j.jweia.2006.01.009.
- Alonso, G., Meseguer, J. and Perez-Grande, I. (2007), "Galloping stability of triangular cross-sectional bodies: A systematic approach",. J. Wind Eng. Ind. Aerod., 95(2007), 928-940. https://doi.org/10.1016/j.jweia.2007.01.012.
- Alonso, G., Meseguer, J., Sanz-Andres, A. and Valero, E. (2010), "On the galloping instability of two-dimensional bodies having elliptical cross-sections", J. Wind Eng. Ind. Aerod., 98(8-9), 438-448. https://doi.org/10.1016/j.jweia.2010.02.002.
- Braun, A.L. and Awruch, A.M. (2005), "Aerodynamic and aeroelastic analysis of bundled cables by numerical simulation", J. Sound Vib., 284 (2005), 51-73. https://doi.org/10.1016/j.jsv.2004.06.026
- Cai, M., Yan, B., Lu, X. and Zhou, L. (2015), "Numerical simulation of aerodynamic coefficients of iced quad bundle conductors", IEEE T. Power Deliver., 30(4), 1-1. https://doi.org/10.1109/TPWRD.2015.2417890.
- Chadha, J. and Jaster, W. (1975), "Influence of turbulence on the galloping instability of iced conductors", IEEE T. Power Appar. Syst., PAS-94(5), 1489-1499. https://doi.org/10.1109/T-PAS.1975.31991.
- Denhartog, J.P. (1932), "Transmission line vibration due to sleet", T. Am. Inst. Electr. Eng., 51(4), 1074-1076. https://doi.org/10.1109/T-AIEE.1932.5056223.
- Desai, Y.M., Yu, A.H.S. and Popplewell, N. (1996), "Perturbation based finite element analyses of transmission line galloping", J. Sound Vib., 191(4), 469-489. https://doi.org/10.1006/jsvi.1996.0135.
- Desai, Y.M., Yu, P., Popplewell, N. and Shah, A.H. (1995), "Finite element modelling of transmission line galloping", Comput. Struct., 57(3), 407-420. https://doi.org/10.1016/0045-7949(94)00630-L.
- ESDU (1980), "Mean Forces, Pressures and Flow Field Velocities for Circular Cylindrical Structures: Single Cylinder with Two-dimensional Flow", Engineering Sciences Data Unit, London, England.
- Farzaneh, M., Volat, C. and Leblond, A. (2008), "Anti-icing and de-icing techniques for overhead lines", Springer Netherlands, Dordrecht, South Holland, Holland.
- Gu, M., Ma, W., Quan, Y. and Huang, P. (2009), "Aerodynamic force characteristics and stabilities of two typical iced conductors", J. Tongji Univ., 37(10), 1328-1332. https://doi.org/10.3969/j.issn.0253-374x.2009.10.010.
- Li, Hairuo, Guo, H. and Xie, Q. (2013), "Wind tunnel test on aerodynamic characteristic of conductor with thin ice accretions", Electr. Power Constr., 34(3), 12-16. https://doi.org/10.3969/j.issn.1000-7229.2013.03.003.
- Ibarra, D., Sorribes, F., Alonso, G. and Meseguer, J. (2014), "Transverse galloping of two-dimensional bodies having a rhombic cross-section", J. Sound Vib., 333(13), 2855-2865. https://doi.org/10.1016/j.jsv.2014.02.030.
- Li, W.P. (2000), "Dynamic aerodynamic characteristics of the galloping of bundled iced power transmission lines", Acta Aerodyn. Sin., 18(4), 413-420. https://doi.org/10.3969/j.issn.0258-1825.2000.04.006
- Li, W.P., Yang, X. and Zhang, L. (1995), "Static aerodynamic characteristics of the galloping of bundled iced power transmission lines", Acta Aerodyn. Sin., 13(4), 427-434.
- Liu, X., Yan, B., Zhang, H. and Zhou, S. (2009), "Nonlinear numerical simulation method for galloping of iced conductor", Appl. Math. Mech., 30(4), 489-501. https://doi.org/10.1007/s10483-009-0409-x.
- Liu, X.H., Bo, Y., Zhang, H.Y. and Song, Z. (2012), "Numerical investigation on galloping of iced quad bundle conductor in stochastic wind field", IEEE T. Power Deliver., 27(2), 784-792. https://doi.org/10.1109/TPWRD.2012.2185252
- Lou, W., Yang, L., Huang, M. and Yang, X. (2014), "Two-parameter bifurcation and stability analysis for nonlinear galloping of iced transmission lines", J Eng. Mech., 140(11), 04014081. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000795.
- Lou, W., Lv, J., Huang, M., Yang, L. and Yan, D. (2014), "Aerodynamic force characteristics and galloping analysis of iced bundled conductors", Wind Struct., 18(2), 135-154. DOI: https://doi.org/10.12989/was.2014.18.2.135
- Luongo, A., Zulli, D. and Piccardo, G. (2007), "A linear curved-beam model for the analysis of galloping in suspended cables", J. Mech. Mater. Struct., 2(4), 675-694. https://doi.org/10.2140/jomms.2007.2.675.
- Luongo, A., Zulli, D. and Piccardo, G. (2008), "Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables", J. Sound Vib., 315(3), 375-393. https://doi.org/10.1016/j.jsv.2008.03.067.
- Luongo, A., Zulli, D. and Piccardo, G. (2009), "On the effect of twist angle on nonlinear galloping of suspended cables", Comput. Struct., 87(2009), 1003-1014. https://doi.org/10.1016/j.compstruc.2008.04.014.
- Ma, W., Gu, M., Quan, Y. and Huang, P. (2010), "Testing study on aerodynamic force characteristics of quasi-oval shape iced conductor", J. Tongji Univ., 38(10), 1409-1413. https://doi.org/10.3969/j.issn.0253-374x.2010.10.002
- Ma, W.Y., Liu, Q.K., Du, X.Q. and Wei, Y.Y. (2015a), "Effect of the Reynolds number on the aerodynamic forces and galloping instability of a cylinder with semi-elliptical cross sections", J. Wind Eng. Ind. Aerod., 146(2015), 71-80. https://doi.org/10.1016/j.jweia.2015.08.006.
- Ma, W.Y., Yuan, X.X., Zhang, X.B., Wei, Y.Y. and Liu, Q.K. (2015b), "Characteristics of aerodynamic forces on a cylinder at Reynolds numbers from 35k to 330k", Eng. Mech., 32(1), 348-352. https://doi.org/10.6052/j.issn.1000-4750.2014.05.S022
- Macdonald, J. and Larose, G.L. (2006), "A unified approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping", J. Fluid. Struct., 22(2), 229-252. https://doi.org/10.1016/j.jfluidstructs.2005.10.002.
- Mccomber, P. and Paradis, A. (1998), "A cable galloping model for thin ice accretions", Atmos. Res., 46(1), 13-25. https://doi.org/10.1016/S0169-8095(97)00047-1.
- Nigol, O. and Buchan, P.G. (1981a), "Conductor galloping-Part II torsional mechanism", IEEE T. Power Appar. Syst., PAS-100(2), 708-720. https://doi.org/10.1109/TPAS.1981.316922
- Nigol, O. and Buchan, P.G. (1981b), "Conductor galloping Part I - Den Hartog mechanism", IEEE T. Power Appar. Syst., PAS-100(2), 699-707. https://doi.org/10.1109/TPAS.1981.316921.
- Nikitas, N. and Macdonald, J.H.G. (2015), "Aerodynamic forcing characteristics of dry cable galloping at critical Reynolds numbers", Eur. J. Mech., 49(2015), 243-249. https://doi.org/10.1016/j.euromechflu.2014.09.005.
- Ohkuma, T. and Marukawa, H. (2000), "Galloping of overhead transmission lines in gusty wind", Wind Struct., 3(4), 243-253. https://doi.org/10.12989/was.2000.3.4.243.
- Wang, X., Lou, W.J., Shen, G.H. and Fu-You, X.U. (2011), "A wind tunnel study on aerodynamic characteristics of iced conductor", Acta Aerodyn. Sin., 29(5), 573-579. https://doi.org/110.3969/j.issn.0258-1825.2011.05.007.
- Yan, D., LV, Z., Lin, W. and Lou, W. (2014), "Experimental study on effect of turbulence intensity on the aerodynamic characteristics of iced conductors", High Volt. Eng., 40(2), 450-457. https://doi.org/10.13336/j.1003-6520.hve.2014.02.017
- Yan, Z., Yan, Z., Li, Z. and Tan, T. (2012), "Nonlinear galloping of internally resonant iced transmission lines considering eccentricity", J. Sound Vib., 331(15), 3599-3616. https://doi.org/10.1016/j.jsv.2012.03.011.
- Yu, P., Desai, Y.M., Popplewell, N. and Shah, A.H. (1993a), "Three-degree-of-freedom model for galloping. Part II: solutions", J. Eng. Mech., 119(12), 2426-2448. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2426).
- Yu, P., Desai, Y.M., Shah, A.H. and Popplewell, N. (1993b), "Three-degree-of-freedom model for galloping. Part I: formulation", J. Eng. Mech., 119(12), 2404-2425. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2404).
- Zhang, Q., Popplewell, N. and Shah, A.H. (2000), "Galloping of bundle conductor", J. Sound Vib., 234(1), 115-134. https://doi.org/10.1006/jsvi.1999.2858.
- Zhang, Z., Yang, X.P. and Hao, S.Y. (2015), "Numerical simulation and analysis of dynamic aerodynamic characteristics of iced conductor", J. Vib. Shock, 34(7), 209-214. https://doi.org/10.13465/j.cnki.jvs.2015.07.033.
- Zhou, L., Yan, B., Zhang, L. and Zhou, S. (2016), "Study on galloping behavior of iced eight bundle conductor transmission lines", J. Sound Vib., 362(2016), 85-110. https://doi.org/10.1016/j.jsv.2015.09.046.
Cited by
- Study on Adaptive Excitation System of Transmission Line Galloping Based on Electromagnetic Repulsive Mechanism vol.2021, 2019, https://doi.org/10.1155/2021/2428667