References
- Eiguren-Fernandez, A., Miguel, A.H., Di Stefano, E., Schmitz, D.A., Cho, A.K., Thurairatnam, S., Avol, E.L. and Froines, J.R. (2008) Atmospheric distribution of gas- and particlephase quinones in Southern California. Aerosol Sci. Tech., 42, 854-861. https://doi.org/10.1080/02786820802339546
- Chung, M.Y., Lazaro, R.A., Lim, D., Jackson, J., Lyon, J., Rendulic, D. and Hasson, A.S. (2006) Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts. Environ. Sci. Technol., 40, 4880-4886. https://doi.org/10.1021/es0515957
- Jakober, C.A., Riddle, S.G., Robert, M.A., Destaillats, H., Charles, M.J., Green, P.G. and Kleeman, M.J. (2007) Quinone emissions from gasoline and diesel motor vehicles. Environ. Sci. Technol., 41, 4548-4554. https://doi.org/10.1021/es062967u
- Shinyashiki, M., Eiguren-Fernandez, A., Schmitz, D.A., Di Stefano, E., Li, N., Linak, W.P., Cho, S.H., Froines, J.R. and Cho, A.K. (2009) Electrophilic and redox properties of diesel exhaust particles. Environ. Res., 109, 239-244. https://doi.org/10.1016/j.envres.2008.12.008
- Talhout, R., Schulz, T., Florek, E., van Benthem, J., Wester, P. and Opperhuizen, A. (2011) Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health, 8, 613-628. https://doi.org/10.3390/ijerph8020613
- Reznick, A.Z., Cross, C.E., Hu, M.L., Suzuki, Y.J., Khwaja, S., Safadi, A., Motchnik, P.A., Packer, L. and Halliwell, B. (1992) Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem. J., 286, 607-611. https://doi.org/10.1042/bj2860607
- Potter, T.L. and Fagerson, I.S. (1990) Composition of coriander leaf volatiles. J. Agr. Food Chem., 38, 2054-2056. https://doi.org/10.1021/jf00101a011
- Wenzl, T., De La Calle, M.B. and Anklam, E. (2003) Analytical methods for the determination of acrylamide in food products: A review. Food Addit. Contam., 20, 885-902. https://doi.org/10.1080/02652030310001605051
- Koeman, J.H., van de Ven, W.S., de Goeij, J.J., Tjioe, P.S. and van Haaften, J.L. (1975) Mercury and selenium in marine mammals and birds. Sci. Total Environ., 3, 279-287. https://doi.org/10.1016/0048-9697(75)90052-2
- Peterson, C.L., Klawe, W.L. and Sharp, G.D. (1973) Mercury in Tunas - Review. Fish. Bull. (Wash. D. C.), 71, 603-613.
- Iwao, S., Sugita, M. and Tsuchiya, K. (1981) Some metabolic interrelationships among cadmium, lead, copper and zinc: results from a field survey in Cd-polluted areas in Japan. Part one: dietary intake of the heavy metals. Keio J. Med., 30, 17-36. https://doi.org/10.2302/kjm.30.17
- Bingham, F.T. (1979) Bioavailability of Cd to Food crops in relation to heavy metal content of sludge-amended soil. Environ. Health Perspect., 28, 39-43. https://doi.org/10.1289/ehp.792839
- Fujiki, H. (2014) Gist of Dr. Katsusaburo Yamagiwa's papers entitled "Experimental study on the pathogenesis of epithelial tumors" (I to VI reports). Cancer Sci., 105, 143-149. https://doi.org/10.1111/cas.12333
- Borgen, A., Darvey, H., Castagnoli, N., Crocker, T.T., Rasmussen, R.E. and Wang, I.Y. (1973) Metabolic conversion of benzo(a)pyrene by Syrian hamster liver microsomes and binding of metabolites to deoxyribonucleic acid. J. Med. Chem., 16, 502-506. https://doi.org/10.1021/jm00263a020
- Herenblum, I. (1945) 3:4-Benzpyrene from coal tar. Nature, 156, 601. https://doi.org/10.1038/156601a0
- Costa, E., Karczmar, A.G. and Vesell, E.S. (1989) Bernard B. Brodie and the rise of chemical pharmacology. Annu. Rev. Pharmacol. Toxicol., 29, 1-21. https://doi.org/10.1146/annurev.pa.29.040189.000245
- Brodie, B.B., Reid, W.D., Cho, A.K., Sipes, G., Krishna, G. and Gillette, J.R. (1971) Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. Natl. Acad. Sci. U.S.A., 68, 160-164. https://doi.org/10.1073/pnas.68.1.160
- Mitchell, J.R., Jollow, D.J., Potter, W.Z., Gillette, J.R. and Brodie, B.B. (1973) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 187, 211-217.
- Friling, R.S., Bensimon, A., Tichauer, Y. and Daniel, V. (1990) Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. U.S.A., 87, 6258-6262. https://doi.org/10.1073/pnas.87.16.6258
- Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev., 13, 76-86. https://doi.org/10.1101/gad.13.1.76
- Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun., 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
- Esterbauer, H., Schaur, R.J. and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 11, 81-128. https://doi.org/10.1016/0891-5849(91)90192-6
- Schopfer, F.J., Cipollina, C. and Freeman, B.A. (2011) Formation and signaling actions of electrophilic lipids. Chem. Rev., 111, 5997-6021. https://doi.org/10.1021/cr200131e
- Sawa, T., Zaki, M.H., Okamoto, T., Akuta, T., Tokutomi, Y., Kim-Mitsuyama, S., Ihara, H., Kobayashi, A., Yamamoto, M., Fujii, S., Arimoto, H. and Akaike, T. (2007) Protein S-guanylation by the biological signal 8-nitroguanosine 3',5'-cyclic monophosphate. Nat. Chem. Biol., 3, 727-735. https://doi.org/10.1038/nchembio.2007.33
- Suzuki, T. and Yamamoto, M. (2017) Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J. Biol. Chem., 292, 16817-16824. https://doi.org/10.1074/jbc.R117.800169
- Ahmed, K.A., Sawa, T. and Akaike, T. (2011) Protein cysteine S-guanylation and electrophilic signal transduction by endogenous nitro-nucleotides. Amino Acids, 41, 123-130. https://doi.org/10.1007/s00726-010-0535-1
- Kobayashi, E., Suzuki, T. and Yamamoto, M. (2013) Roles nrf2 plays in myeloid cells and related disorders. Oxid. Med. Cell. Longev., 2013, 529219.
- Jones, D.P. (2008) Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol., 295, C849-C868. https://doi.org/10.1152/ajpcell.00283.2008
- Kumagai, Y. and Abiko, Y. (2017) Environmental electrophiles: Protein adducts, modulation of redox signaling, and interaction with persulfides/polysulfides. Chem. Res. Toxicol., 30, 203-219. https://doi.org/10.1021/acs.chemrestox.6b00326
- Kumagai, Y., Shinkai, Y., Miura, T. and Cho, A.K. (2012) The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol., 52, 221-247. https://doi.org/10.1146/annurev-pharmtox-010611-134517
- Sumi, D. (2008) Biological effects of and responses to exposure to electrophilic environmental chemicals. J. Health Sci., 54, 267-272. https://doi.org/10.1248/jhs.54.267
- Ahn, S.G. and Thiele, D.J. (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev., 17, 516-528. https://doi.org/10.1101/gad.1044503
- Nishizawa, J., Nakai, A., Matsuda, K., Komeda, M., Ban, T. and Nagata, K. (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation, 99, 934-941. https://doi.org/10.1161/01.CIR.99.7.934
- Itoh, K., Tong, K.I. and Yamamoto, M. (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med., 36, 1208-1213. https://doi.org/10.1016/j.freeradbiomed.2004.02.075
- Ha, H.L. and Yu, D.Y. (2010) HBx-induced reactive oxygen species activates hepatocellular carcinogenesis via dysregulation of PTEN/Akt pathway. World J. Gastroenterol., 16, 4932-4937. https://doi.org/10.3748/wjg.v16.i39.4932
- Tan, P.L., Shavlakadze, T., Grounds, M.D. and Arthur, P.G. (2015) Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int. J. Biochem. Cell Biol., 62, 72-79. https://doi.org/10.1016/j.biocel.2015.02.015
- Tonks, N.K. (2003) PTP1B: From the sidelines to the front lines! FEBS Lett., 546, 140-148. https://doi.org/10.1016/S0014-5793(03)00603-3
- Lee, S.R., Kwon, K.S., Kim, S.R. and Rhee, S.G. (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem., 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
- Tiganis, T. and Bennett, A.M. (2007) Protein tyrosine phosphatase function: The substrate perspective. Biochem. J., 402, 1-15. https://doi.org/10.1042/BJ20061548
- Iwamoto, N., Sumi, D., Ishii, T., Uchida, K., Cho, A.K., Froines, J.R. and Kumagai, Y. (2007) Chemical knockdown of protein-tyrosine phosphatase 1B by 1,2-naphthoquinone through covalent modification causes persistent transactivation of epidermal growth factor receptor. J. Biol. Chem., 282, 33396-33404. https://doi.org/10.1074/jbc.M705224200
- Abiko, Y. et al. Personal communication.
- Yoshida, E., Kurita, M., Eto, K., Kumagai, Y. and Kaji, T. (2017) Methylmercury promotes prostacyclin release from cultured human brain microvascular endothelial cells via induction of cyclooxygenase-2 through activation of the EGFR-p38 MAPK pathway by inhibiting protein tyrosine phosphatase 1B activity. Toxicology, 392, 40-46. https://doi.org/10.1016/j.tox.2017.09.013
- Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M. and Cook, J.L. (1999) Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem., 274, 26071-26078. https://doi.org/10.1074/jbc.274.37.26071
- Wild, A.C., Moinova, H.R. and Mulcahy, R.T. (1999) Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J. Biol. Chem., 274, 33627-33636. https://doi.org/10.1074/jbc.274.47.33627
- Chan, J.Y. and Kwong, M. (2000) Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim. Biophys. Acta, 1517, 19-26. https://doi.org/10.1016/S0167-4781(00)00238-4
- Hayashi, A., Suzuki, H., Itoh, K., Yamamoto, M. and Sugiyama, Y. (2003) Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein 1 in mouse embryo fibroblasts. Biochem. Biophys. Res. Commun., 310, 824-829. https://doi.org/10.1016/j.bbrc.2003.09.086
- Vollrath, V., Wielandt, A.M., Iruretagoyena, M. and Chianale, J. (2006) Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene. Biochem. J., 395, 599-609. https://doi.org/10.1042/BJ20051518
- Maher, J.M., Dieter, M.Z., Aleksunes, L.M., Slitt, A.L., Guo, G., Tanaka, Y., Scheffer, G.L., Chan, J.Y., Manautou, J.E., Chen, Y., Dalton, T.P., Yamamoto, M. and Klaassen, C.D. (2007) Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology, 46, 1597-1610. https://doi.org/10.1002/hep.21831
- Kalthoff, S., Ehmer, U., Freiberg, N., Manns, M.P. and Strassburg, C.P. (2010) Interaction between oxidative stress sensor Nrf2 and xenobiotic-activated aryl hydrocarbon receptor in the regulation of the human phase II detoxifying UDP-glucuronosyltransferase 1A10. J. Biol. Chem., 285, 5993- 6002. https://doi.org/10.1074/jbc.M109.075770
- Hirose, R., Miura, T., Sha, R., Shinkai, Y., Tanaka-Kagawa, T. and Kumagai, Y. (2012) A method for detecting covalent modification of sensor proteins associated with 1,4-naphthoquinone-induced activation of electrophilic signal transduction pathways. J. Toxicol. Sci., 37, 891-898. https://doi.org/10.2131/jts.37.891
- Abiko, Y., Sha, L., Shinkai, Y., Unoki, T., Luong, N.C., Tsuchiya, Y., Watanabe, Y., Hirose, R., Akaike, T. and Kumagai, Y. (2017) 1,4-Naphthoquinone activates the HSP90/HSF1 pathway through the S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides. Free Radic. Biol. Med., 104, 118-128. https://doi.org/10.1016/j.freeradbiomed.2016.12.047
- Shinkai, Y., Masuda, A., Akiyama, M., Xian, M. and Kumagai, Y. (2017) Cadmium-mediated activation of the HSP90/HSF1 pathway regulated by reactive persulfides/polysulfides. Toxicol. Sci., 156, 412-421.
- Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P. and Mak, T.W. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 95, 29-39. https://doi.org/10.1016/S0092-8674(00)81780-8
- Unoki, T., Abiko, Y., Toyama, T., Uehara, T., Tsuboi, K., Nishida, M., Kaji, T. and Kumagai, Y. (2016) Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells. Sci. Rep., 6, 28944. https://doi.org/10.1038/srep28944
- Abiko, Y., Shinkai, Y., Unoki, T., Hirose, R., Uehara, T. and Kumagai, Y. (2017) Polysulfide Na2S4 regulates the activation of PTEN/Akt/CREB signaling and cytotoxicity mediated by 1,4-naphthoquinone through formation of sulfur adducts. Sci. Rep., 7, 4814. https://doi.org/10.1038/s41598-017-04590-z
- Unoki, T., Akiyama, M., Kumagai, Y., Goncalves, F.M., Farina, M., da Rocha, J.B.T. and Aschner, M. (2018) Molecular pathways associated with methylmercury-induced Nrf2 modulation. Front. Genet., 9, 373. https://doi.org/10.3389/fgene.2018.00373
- Endo, A., Sumi, D., Iwamoto, N. and Kumagai, Y. (2011) Inhibition of DNA binding activity of cAMP response element-binding protein by 1,2-naphthoquinone through chemical modification of Cys-286. Chem. Biol. Interact., 192, 272-277. https://doi.org/10.1016/j.cbi.2011.04.003
- Lu, S.C. (2013) Glutathione synthesis. Biochim. Biophys. Acta, 1830, 3143-3153. https://doi.org/10.1016/j.bbagen.2012.09.008
- Armstrong, R.N. (1991) Glutathione S-transferases: reaction mechanism, structure, and function. Chem. Res. Toxicol., 4, 131-140. https://doi.org/10.1021/tx00020a001
- Eggler, A.L., Liu, G., Pezzuto, J.M., van Breemen, R.B. and Mesecar, A.D. (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc. Natl. Acad. Sci. U.S.A., 102, 10070-10075. https://doi.org/10.1073/pnas.0502402102
- Ketterer, B., Coles, B. and Meyer, D.J. (1983) The role of glutathione in detoxication. Environ. Health Perspect., 49, 59-69. https://doi.org/10.1289/ehp.834959
- Gum, S.I. and Cho, M.K. (2013) Recent updates on acetaminophen hepatotoxicity: the role of nrf2 in hepatoprotection. Toxicol. Res., 29, 165-172. https://doi.org/10.5487/TR.2013.29.3.165
- Polhemus, D.J., Calvert, J.W., Butler, J. and Lefer, D.J. (2014) The cardioprotective actions of hydrogen sulfide in acute myocardial infarction and heart failure. Scientifica (Cairo), 2014, 768607.
- Polhemus, D.J. and Lefer, D.J. (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res., 114, 730-737. https://doi.org/10.1161/CIRCRESAHA.114.300505
- Hughes, M.N., Centelles, M.N. and Moore, K.P. (2009) Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic. Biol. Med., 47, 1346-1353. https://doi.org/10.1016/j.freeradbiomed.2009.09.018
- Yoshida, E., Toyama, T., Shinkai, Y., Sawa, T., Akaike, T. and Kumagai, Y. (2011) Detoxification of methylmercury by hydrogen sulfide-producing enzyme in Mammalian cells. Chem. Res. Toxicol., 24, 1633-1635. https://doi.org/10.1021/tx200394g
- Ida, T., Sawa, T., Ihara, H., Tsuchiya, Y., Watanabe, Y., Kumagai, Y., Suematsu, M., Motohashi, H., Fujii, S., Matsunaga, T., Yamamoto, M., Ono, K., Devarie-Baez, N.O., Xian, M., Fukuto, J.M. and Akaike, T. (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc. Natl. Acad. Sci. U.S.A., 111, 7606-7611. https://doi.org/10.1073/pnas.1321232111
- Akaike, T., Ida, T., Wei, F.Y., Nishida, M., Kumagai, Y., Alam, M.M., Ihara, H., Sawa, T., Matsunaga, T., Kasamatsu, S., Nishimura, A., Morita, M., Tomizawa, K., Nishimura, A., Watanabe, S., Inaba, K., Shima, H., Tanuma, N., Jung, M., Fujii, S., Watanabe, Y., Ohmuraya, M., Nagy, P., Feelisch, M., Fukuto, J.M. and Motohashi, H. (2017) Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat. Commun., 8, 1177. https://doi.org/10.1038/s41467-017-01311-y
- Abiko, Y., Yoshida, E., Ishii, I., Fukuto, J.M., Akaike, T. and Kumagai, Y. (2015) Involvement of reactive persulfides in biological bismethylmercury sulfide formation. Chem. Res. Toxicol., 28, 1301-1306. https://doi.org/10.1021/acs.chemrestox.5b00101
- Nishida, M., Sawa, T., Kitajima, N., Ono, K., Inoue, H., Ihara, H., Motohashi, H., Yamamoto, M., Suematsu, M., Kurose, H., van der Vliet, A., Freeman, B.A., Shibata, T., Uchida, K., Kumagai, Y. and Akaike, T. (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol., 8, 714-724. https://doi.org/10.1038/nchembio.1018
- Akiyama, M., Shinkai, Y., Unoki, T., Shim, I., Ishii, I. and Kumagai, Y. (2017) The capture of cadmium by reactive polysulfides attenuates cadmium-induced adaptive responses and hepatotoxicity. Chem. Res. Toxicol., 30, 2209-2217. https://doi.org/10.1021/acs.chemrestox.7b00278
- Abiko, Y., Ishii, I., Kamata, S., Tsuchiya, Y., Watanabe, Y., Ihara, H., Akaike, T. and Kumagai, Y. (2015) Formation of sulfur adducts of N-acetyl-p-benzoquinoneimine, an electrophilic metabolite of acetaminophen in vivo: Participation of reactive persulfides. Chem. Res. Toxicol., 28, 1796-1802. https://doi.org/10.1021/acs.chemrestox.5b00245