수자원분야에서의 기계학습 응용(1)

  • Published : 2019.09.15

Abstract

Keywords

References

  1. Anmala, J., Zhang, B. and Govindaraju, R.S. (2000). Comparison of ANNs and empirical approaches for predicting watershed runoff. Journal of Water Resour. Plann. Manage., Vol. 126, No. 3, pp. 156-166. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:3(156)
  2. Araghinejad, S. (2013). Data-Driven Modeling: Using MATLAB in Water Resources and Environmental Engineering. Water Science and Technology Library, Springer.
  3. Burges, C.J.C. (1998), A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, Vol. 2, Kluwer Academic, Boston, pp. 121-167.
  4. Chang, C.C. and Lin, C.J. (2001). LIBSVM: A Library for Support Vector Machines. Department of Computer Science, National Taiwan University, Taipei, Taiwan.
  5. Garbrecht, J.D. (2006). Comparison of three alternative ANN designs for monthly rainfall-runoff simulation. Journal of Hydrologic Engineering, Vol. 11, No. 5, pp. 502-505. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:5(502)
  6. Granata, F., Gargano, R., and Marinis, G. (2016). Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA's SWMM, Water 2016, Vol. 8, No. 69 doi:10.3390/w8030069
  7. Kim, H.I., Keum, H.J. and Han, K.Y. (2018). Application and comparison of dynamic artificial neural networks for urban inundation analysis. Journal of the Korean Society of Civil Engineers, Vol. 38, No. 5, pp. 671-683. https://doi.org/10.12652/Ksce.2018.38.5.0671
  8. Kim, H.I., Keum, H.J. and Han, K.Y. (2019). Real-time urban inundation prediction combining hydraulic and probabilistic methods. Water, Vol. 11, No. 293, doi:10.3390/w11020293.
  9. Lin, G.F., Lin, H.Y. and Chou, Y.C. (2013). Development of a real-time regional-inundation forecasting model for the inundation warning system. Journal of Hydroinformatics, doi:l0.2166/hydro.2031.202.
  10. Murphy, K.P. (2012). Machine Learning: A Probabilistic Perspective. Massachusetts Institute of Technology.
  11. Sajikumar, N. and Thandaveswara, B.S. (1999). Non-linear rainfall-runoff model using artificial neural network. Journal of Hydrology, Vol. 216, pp. 32-35. https://doi.org/10.1016/S0022-1694(98)00273-X
  12. Shen, H.Y., Chang, L.C. (2013). Online multistep-ahead inundation depth forecasts by recurrent NARX networks. Hydrology and Earth System Sciences, Vol. 17, pp. 935-945. https://doi.org/10.5194/hess-17-935-2013
  13. Toth, E., Brath, A. and Montanari, A. (2000). Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology, Vol. 239, pp. 132-147. https://doi.org/10.1016/S0022-1694(00)00344-9
  14. Vanpnic, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York.