References
- Anmala, J., Zhang, B. and Govindaraju, R.S. (2000). Comparison of ANNs and empirical approaches for predicting watershed runoff. Journal of Water Resour. Plann. Manage., Vol. 126, No. 3, pp. 156-166. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:3(156)
- Araghinejad, S. (2013). Data-Driven Modeling: Using MATLAB in Water Resources and Environmental Engineering. Water Science and Technology Library, Springer.
- Burges, C.J.C. (1998), A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, Vol. 2, Kluwer Academic, Boston, pp. 121-167.
- Chang, C.C. and Lin, C.J. (2001). LIBSVM: A Library for Support Vector Machines. Department of Computer Science, National Taiwan University, Taipei, Taiwan.
- Garbrecht, J.D. (2006). Comparison of three alternative ANN designs for monthly rainfall-runoff simulation. Journal of Hydrologic Engineering, Vol. 11, No. 5, pp. 502-505. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:5(502)
- Granata, F., Gargano, R., and Marinis, G. (2016). Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA's SWMM, Water 2016, Vol. 8, No. 69 doi:10.3390/w8030069
- Kim, H.I., Keum, H.J. and Han, K.Y. (2018). Application and comparison of dynamic artificial neural networks for urban inundation analysis. Journal of the Korean Society of Civil Engineers, Vol. 38, No. 5, pp. 671-683. https://doi.org/10.12652/Ksce.2018.38.5.0671
- Kim, H.I., Keum, H.J. and Han, K.Y. (2019). Real-time urban inundation prediction combining hydraulic and probabilistic methods. Water, Vol. 11, No. 293, doi:10.3390/w11020293.
- Lin, G.F., Lin, H.Y. and Chou, Y.C. (2013). Development of a real-time regional-inundation forecasting model for the inundation warning system. Journal of Hydroinformatics, doi:l0.2166/hydro.2031.202.
- Murphy, K.P. (2012). Machine Learning: A Probabilistic Perspective. Massachusetts Institute of Technology.
- Sajikumar, N. and Thandaveswara, B.S. (1999). Non-linear rainfall-runoff model using artificial neural network. Journal of Hydrology, Vol. 216, pp. 32-35. https://doi.org/10.1016/S0022-1694(98)00273-X
- Shen, H.Y., Chang, L.C. (2013). Online multistep-ahead inundation depth forecasts by recurrent NARX networks. Hydrology and Earth System Sciences, Vol. 17, pp. 935-945. https://doi.org/10.5194/hess-17-935-2013
- Toth, E., Brath, A. and Montanari, A. (2000). Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology, Vol. 239, pp. 132-147. https://doi.org/10.1016/S0022-1694(00)00344-9
- Vanpnic, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York.