DOI QR코드

DOI QR Code

Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking NF-κB and MAPK pathways

  • Asanka Sanjeewa, K.K. (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University) ;
  • Fernando, I.P.S. (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University) ;
  • Kim, Seo-Young (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University) ;
  • Kim, Won-Suck (College of Medical and Life Sciences, Silla University) ;
  • Ahn, Ginnae (Department of Marine Bio Food Science, Chonnam National University) ;
  • Jee, Youngheun (Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
  • 투고 : 2018.09.13
  • 심사 : 2019.02.10
  • 발행 : 2019.03.15

초록

Ecklonia cava (EC) has been widely utilized as an ingredient in commercial products such as functional foods and cosmeceuticals. Recently it has been found that Sargassum horneri (SH) has been invading on Jeju Island coast area by its huge blooming. Moreover, both seaweeds are considering as important ingredients in traditional medicine specifically in East-Asian countries (China, Japan, and Korea). In the present study, we attempted to compare anti-inflammatory properties of 70% ethanolic extracts of EC (ECE), SH (SHE), and their different combinations on lipopolysaccharide (LPS)-activated RAW 264.7 cells. Results indicated that 8 : 2 combinations of ECE : SHE significantly inhibited LPS-activated inflammatory responses (cytokines, protein, and gene expression) in RAW 264.7 macrophage cells compared to the respective extracts and other combinations. The synergistic effect of ECE and SHE was found to be prominent than the effects of ECE or SHE alone. These observations provide useful information for the industrial formulation of functional materials (functional foods and cosmeceuticals) using these two particular seaweeds in Jeju Island of South Korea.

키워드

과제정보

연구 과제 주관 기관 : Jeju National University

참고문헌

  1. Chandler, S. F. & Dodds, J. H. 1983. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Rep. 2:205-208. https://doi.org/10.1007/BF00270105
  2. Chang, M. Y., Han, S. Y., Shin, H. -C., Byun, J. Y., Rah, Y. C. & Park, M. K. 2016. Protective effect of a purified polyphenolic extract from Ecklonia cava against noise-induced hearing loss: prevention of temporary threshold shift. Int. J. Pediatr. Otorhinolaryngol. 87:178-184. https://doi.org/10.1016/j.ijporl.2016.06.028
  3. Chengkui, Z., Tseng, C. K., Junfu, Z. & Chang, C. F. 1984. Chinese seaweeds in herbal medicine. Hydrobiologia 116:152-154. https://doi.org/10.1007/BF00027655
  4. Choi, Y., Hosseindoust, A., Goel, A., Lee, S., Jha, P. K., Kwon, I. K. & Chae, B. -J. 2017. Effects of Ecklonia cava as fucoidan-rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs. Asian-Australas. J. Anim. Sci. 30:64-70. https://doi.org/10.5713/ajas.16.0102
  5. Dinarello, C. A. 2000. Proinflammatory cytokines. Chest 118:503-508. https://doi.org/10.1378/chest.118.2.503
  6. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  7. Fernando, I., Kim, H. -S., Sanjeewa, K., Oh, J. -Y., Jeon, Y. -J. & Lee, W. W. 2017. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae. Algae 32:261-273. https://doi.org/10.4490/algae.2017.32.8.14
  8. Fernando, I. P. S., Nah, J. -W. & Jeon, Y. -J. 2016. Potential antiinflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 48:22-30. https://doi.org/10.1016/j.etap.2016.09.023
  9. Heo, S. -J., Ko, S. -C., Cha, S. -H., Kang, D. -H., Park, H. -S., Choi, Y. -U., Kim, D., Jung, W. -K. & Jeon, Y. -J. 2009. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro 23:1123-1130. https://doi.org/10.1016/j.tiv.2009.05.013
  10. Horwitz, W. & Latimer, G. W. 1990. Official methods of analysis of AOAC International. 15th ed. AOAC International, Gaithersburg, MD, pp 38-39.
  11. Kim, H. -S., Sanjeewa, K. K. A., Fernando, I., Ryu, B., Yang, H. -W., Ahn, G., Kang, M. C., Heo, S .-J., Je, J. -G. & Jeon, Y. -J. 2018. A comparative study of Sargassum horneri Korea and China strains collected along the coast of Jeju Island South Korea: its components and bioactive properties. Algae 33:341-349. https://doi.org/10.4490/algae.2018.33.11.15
  12. Kim, M. E., Jung, Y. C., Jung, I., Lee, H. -W., Youn, H. -Y. & Lee, J. S. 2015. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-${\kappa}B$ pathway regulation. Immunol. Invest. 44:137-146. https://doi.org/10.3109/08820139.2014.942459
  13. Lee, J. -C., Hou, M. -F., Huang, H. -W., Chang, F. -R., Yeh, C. -C., Tang, J. -Y. & Chang, H. -W. 2013. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 13:55. https://doi.org/10.1186/1475-2867-13-55
  14. Lee, J. -H., Eom, S. -H., Lee, E. -H., Jung, Y. -J., Kim, H. -J., Jo, M. -R., Son, K. -T., Lee, H. -J., Kim, J. H., Lee, M. -S. & Kim, Y. -M. 2014a. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 29:47-55. https://doi.org/10.4490/algae.2014.29.1.047
  15. Lee, J. -H., Ko, J. -Y., Oh, J. -Y., Kim, C. -Y., Lee, H. -J., Kim, J. & Jeon, Y. -J. 2014b. Preparative isolation and purification of phlorotannins from Ecklonia cava using centrifugal partition chromatography by one-step. Food Chem. 158:433-437. https://doi.org/10.1016/j.foodchem.2014.02.112
  16. Lee, M. -S., Kwon, M. -S., Choi, J. -W., Shin, T., No, H. K., Choi, J. -S., Byun, D. -S., Kim, J. -I. & Kim, H. -R. 2012. Antiinflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J. Agric. Food Chem. 60:9120-9129. https://doi.org/10.1021/jf3022018
  17. Lee, S. -H., Kwak, C. -H., Lee, S. -K., Ha, S. -H., Park, J., Chung, T. -W., Ha, K. -T., Suh, S. -J., Chang, Y. -C., Chang, H. W., Lee, Y. -C., Kang, B. -S., Magae, J. & Kim, C. -H. 2016. Anti-inflammatory effect of ascochlorin in LPS-stimulated RAW 264.7 macrophage cells is accompanied with the down-regulation of iNOS, COX-2 and proinflammatory cytokines through NF-${\kappa}$B, ERK1/2, and p38 signaling pathway. J. Cell. Biochem. 117:978-987. https://doi.org/10.1002/jcb.25383
  18. Leiro, J., Alvarez, E., Garcia, D. & Orallo, F. 2002. Resveratrol modulates rat macrophage functions. Int. Immunopharmacol. 2:767-774. https://doi.org/10.1016/S1567-5769(02)00014-0
  19. Le Tutour, B. 1990. Antioxidative activities of algal extracts, synergistic effect with vitamin E. Phytochemistry 29:3759-3765. https://doi.org/10.1016/0031-9422(90)85327-C
  20. Liu, L., Heinrich, M., Myers, S. & Dworjanyn, S. A. 2012. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in traditional Chinese medicine: a phytochemical and pharmacological review. J. Ethnopharmacol. 142:591-619. https://doi.org/10.1016/j.jep.2012.05.046
  21. Livak, K. J. & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-^{{\Delta}{\Delta}CT}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  22. Mikolajczak, P. L., Kedzia, B., Ozarowski, M., Kujawski, R., Bogacz, A., Bartkowiak-Wieczorek, J., Bialas, W., Gryszczynska, A., Buchwald, W., Szulc, M., Wasiak, N., Gorska-Paukszta, M., Baraniak, J., Czerny, B. & Seremak-Mrozikiewicz, A. 2015. Evaluation of anti-inflammatory and analgesic activities of extracts from herb of Chelidonium majus L. Cent. Eur. J. Immunol. 40:400-410.
  23. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  24. Nakanishi, M. & Rosenberg, D. W. 2013. Multifaceted roles of $PGE_{2}$ in inflammation and cancer. Semin. Immunopathol. 35:123-137. https://doi.org/10.1007/s00281-012-0342-8
  25. Nisizawa, K. 1979. Pharmaceutical studies on marine algae in Japan. In Hoppe, H. A., Levring, T. & Tanaka, Y. (Eds.) Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, pp. 243-264.
  26. Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M. & Greiner, R. 2017. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res. Int. 99:1066-1083. https://doi.org/10.1016/j.foodres.2016.08.016
  27. Sanjeewa, K. K., Fernando, I. P. S., Kim, E. -A., Ahn, G., Jee, Y. & Jeon, Y. -J. 2017. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr. Res. Pract. 11:3-10. https://doi.org/10.4162/nrp.2017.11.1.3
  28. Seo, S., Lee, K. -G., Shin, J. -S., Chung, E. K., Lee, J. Y., Kim, H. J. & Lee, K. -T. 2016. 6'-O-Caffeoyldihydrosyringin isolated from Aster glehni suppresses lipopolysaccharideinduced iNOS, COX-2, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 expression via NF-${\kappa}B$ and AP-1 inactivation in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett. 26:4592-4598. https://doi.org/10.1016/j.bmcl.2016.08.074
  29. Takeuchi, O. 2016. Posttranscriptional regulation of cytokine mRNA controls the initiation and resolution of inflammation. In Miyasaka, M. & Takatsu, K. (Eds.) Chronic Inflammation: Mechanisms and Regulation. Springer Japan, Tokyo, pp. 319-332.
  30. Torres-Rodriguez, M. L., Garcia-Chavez, E., Berhow, M. & de Mejia, E. G. 2016. Anti-inflammatory and anti-oxidant effect of Calea urticifolia lyophilized aqueous extract on lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 188:266-274. https://doi.org/10.1016/j.jep.2016.04.057
  31. Wang, H. -M., Chen, C. -C., Huynh, P. & Chang, J. -S. 2015. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184:355-362. https://doi.org/10.1016/j.biortech.2014.12.001
  32. Wen, Z. -S., Xiang, X. -W., Jin, H. -X., Guo, X. -Y., Liu, L. -J., Huang, Y. -N., OuYang, X. -K. & Qu, Y. -L. 2016. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages. Int. J. Biol. Macromol. 88:403-413. https://doi.org/10.1016/j.ijbiomac.2016.02.025
  33. Wijesinghe, W. A. J. P., Ahn, G., Lee, W. -W., Kang, M. -C., Kim, E. -A. & Jeon, Y. -J. 2012. Anti-inflammatory activity of phlorotannin-rich fermented Ecklonia cava processing by-product extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Appl. Phycol. 25:1207-1213. https://doi.org/10.1007/s10811-012-9939-5
  34. Won, J. -H., Im, H. -T., Kim, Y. -H., Yun, K. -J., Park, H. -J., Choi, J. -W. & Lee, K. -T. 2006. Anti-inflammatory effect of buddlejasaponin IV through the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via the NF-${\kappa}B$ inactivation. Br. J. Pharmacol. 148:216-225. https://doi.org/10.1038/sj.bjp.0706718
  35. Yang, E. -J., Moon, J. -Y., Kim, M. -J., Kim, D. S., Kim, C. -S., Lee, W. J., Lee, N. H. & Hyun, C. -G. 2010. Inhibitory effect of Jeju endemic seaweeds on the production of proinflammatory mediators in mouse macrophage cell line RAW 264.7. J. Zhejiang Univ. Sci. B 11:315-322. https://doi.org/10.1631/jzus.B0900364
  36. Yang, E. -J., Moon, J. -Y., Kim, S. S., Yang, K. -W., Lee, W. J., Lee, N. H. & Hyun, C. -G. 2014. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages. Asian Pac. J. Trop. Biomed. 4:529-537. https://doi.org/10.12980/APJTB.4.2014C1099
  37. Zhang, Q., Yang, Y., Yan, S., Liu, J., Xu, Z., Yu, J., Song, Y., Zhang, A. & Jin, M. 2015. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway. Front. Microbiol. 6:178. https://doi.org/10.3389/fmicb.2015.00178

피인용 문헌

  1. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review vol.17, pp.10, 2019, https://doi.org/10.3390/md17100590
  2. The Influence of Polysaccharides from Sea Algae on the Pathogenetic Targets of Helicobacter Pylori - a New Direction in Therapy and Prevention of Infection vol.65, pp.1, 2019, https://doi.org/10.37489/0235-2990-2020-65-1-2-44-53
  3. Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model vol.35, pp.2, 2020, https://doi.org/10.4490/algae.2020.35.5.14
  4. Sulfoquinovosylmonoacylglycerols regulating intestinal inflammation in co-culture system from the brown alga Turbinaria ornata vol.35, pp.2, 2019, https://doi.org/10.4490/algae.2020.35.5.23
  5. Artificial seed production and cultivation of Sargassum macrocarpum (Fucales, Phaeophyta) vol.35, pp.2, 2019, https://doi.org/10.4490/algae.2020.35.5.27
  6. Drying seaweeds using hybrid hot water Goodle dryer (HHGD): comparison with freeze-dryer in chemical composition and antioxidant activity vol.24, pp.1, 2019, https://doi.org/10.47853/fas.2021.e3
  7. Dieckol, an Algae-Derived Phenolic Compound, Suppresses UVB-Induced Skin Damage in Human Dermal Fibroblasts and Its Underlying Mechanisms vol.10, pp.3, 2019, https://doi.org/10.3390/antiox10030352
  8. The Anti-Oxidative and Anti-Neuroinflammatory Effects of Sargassum horneri by Heme Oxygenase-1 Induction in BV2 and HT22 Cells vol.10, pp.6, 2019, https://doi.org/10.3390/antiox10060859
  9. Arsenic removal from the popular edible seaweed Sargassum fusiforme by sequential processing involving hot water, citric acid, and fermentation vol.292, 2019, https://doi.org/10.1016/j.chemosphere.2021.133409