DOI QR코드

DOI QR Code

Intraspecific variations in macronutrient, amino acid, and fatty acid composition of mass-cultured Teleaulax amphioxeia (Cryptophyceae) strains

  • Lee, Bae Ik (Aquaculture Research Department, National Institute of Fisheries Science) ;
  • Kim, Shin Kwon (Aquaculture Research Department, National Institute of Fisheries Science) ;
  • Kim, Jong Hyeok (Dinorena Co. Ltd.) ;
  • Kim, Hyung Seop (Department of Marine Biotechnology, Kunsan National University) ;
  • Kim, Jong Im (Department of Biology, Chungnam National University) ;
  • Shin, Woongghi (Department of Biology, Chungnam National University) ;
  • Rho, Jung-Rae (Department of Marine Biotechnology, Kunsan National University) ;
  • Yih, Wonho (Department of Marine Biotechnology, Kunsan National University)
  • Received : 2019.02.28
  • Accepted : 2019.06.04
  • Published : 2019.06.15

Abstract

To compare the nutritional quality of TPG (Teleaulax / Plagioselmis / Geminigera) clade species of cryptomonads with that of RHO (Rhodomonas / Rhinomonas / Storeatula) clade species 6 Teleaulax amphioxeia (TA) and 1 Rhinomonas sp. strains were mass-cultured in newly designed 500-L photobioreactors to the end of exponential growth phase. Intraspecific variations (IVs) in terms of one standard deviation among the 6 TA strains in the compositions of the three macronutrients were 41.5 (protein), 89.8 (lipid), and 15.6% (carbohydrate) of the mean. When harvested from stationary growth phase mean compositions of essential amino acids (EAAs, 47.3%) and non-EAAs (52.7%) of the 2 TA strains, CR-MAL07 and CR-MAL08-2, were similar to those of a Chroomonas strain. The IVs between the 2 TA strains in the composition of EAAs (10.3 and 2.4) and non-EAAs (8.5 and 2.1% of the mean) were rather smaller than those of saturated fatty acids (30.3 and 26.1) and unsaturated fatty acids (UFAs, 12.0 and 12.5% of the mean) in f/2-Si and urea-based compound fertilizer (UCF) culture media, respectively. Mean compositions of eicosapentaenoic acid (EPA, 17.9%) and docosahexaenoic acid (DHA, 12.7%) of total fatty acids of the 2 TA strains were higher than those that of a Chroomonas strain. EPA and DHA compositions exhibited similar level of IVs between the 2 TA strains in f/2-Si (14.6 and 11.0) and UCF media (12.6 and 13.5% of the mean). Thus, the nutritional quality in terms of amino acids, UFAs, EPA, and DHA in a TPG clade species, T. amphioxeia was comparable to those of RHO clade species with notable IVs. Practically, biotechnological targets for TPG clade cryptomonad strains might be subspecies or clone level.

Keywords

Acknowledgement

Grant : Mass-production of multifunctional aquaculture live-feeds in renovative photobioreactors

Supported by : National Institute of Fisheries Science (NIFS), KIMST (Korea Institute of Marine Science and Technology), NRF

References

  1. Association of Analytical Chemists. 1995. Official methods of analysis. 16th ed. Association of Analytical Chemists, Washington, DC, pp. 69-74.
  2. Boelen, P., Van Mastrigt, A., Van De Bovenkamp, H. H., Heeres, H. J. & Buma, A. G. J. 2017. Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae. Aquac. Int. 25:577-587. https://doi.org/10.1007/s10499-016-0053-6
  3. Brown, M. R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 145:79-99. https://doi.org/10.1016/0022-0981(91)90007-J
  4. Brown, M. R., Jeffrey, S. W., Volkman, J. K. & Dunstan, G. A. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151:315-331. https://doi.org/10.1016/S0044-8486(96)01501-3
  5. Choi, B., Son, M., Kim, J. I. & Shin, W. 2013. Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea. Algae 28:307-330. https://doi.org/10.4490/algae.2013.28.4.307
  6. Chu, F. -L. E., Lund, E. D. & Podbesek, J. A. 2008. Quantitative significance of n-3 essential fatty acid contribution by heterotrophic protists in marine pelagic food webs. Mar. Ecol. Prog. Ser. 354:85-95. https://doi.org/10.3354/meps07215
  7. Dean, J. C., Mirkovic, T., Toa, Z. S. D., Oblinsky, D. G. & Scholes, G. D. 2016. Vibronic enhancement of algae light harvesting. Chem 1:858-872. https://doi.org/10.1016/j.chempr.2016.11.002
  8. Doust, A. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. 2006. The photophysics of cryptophyte light-harvesting. J. Photochem. Photobiol. A. Chem. 184:1-17. https://doi.org/10.1016/j.jphotochem.2006.06.006
  9. Dunstan, G. A., Brown, M. R. & Volkman, J. K. 2005. Cryptophyceae and Rhodophyceae: chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557-2570. https://doi.org/10.1016/j.phytochem.2005.08.015
  10. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  11. Ha, N. 2009. Optimal growth condition of cryptophyte strains and condition for toxin release by dinoflagellate Dinophysis acuminata with sequestered chloroplasts of cryptophyte origin. M.S. thesis, Graduate School, Kunsan National University, Gunsan, Korea, 110 pp. (in Korean with English abstract)
  12. Hoef-Emden, K., Marin, B. & Melkonian, M. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol. 55:161-179. https://doi.org/10.1007/s00239-002-2313-5
  13. Hubbard, K. A., Rocap, G. & Armbrust, E. V. 2008. Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J. Phycol. 44:637-649. https://doi.org/10.1111/j.1529-8817.2008.00518.x
  14. Huerliman, R., de Nys, R. & Hiemann, K. 2010. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 107:245-257. https://doi.org/10.1002/bit.22809
  15. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  16. Jumper, C. C., Van Stokkum, I. H. M., Mirkovic, T. & Scholes, G. D. 2018. Vibronic wavepackets and energy transfer in Cryptophyte light-harvesting complexes. J. Phys. Chem. B 122:6328-6340. https://doi.org/10.1021/acs.jpcb.8b02629
  17. Kim, G., Mujtaba, G. & Lee, K. 2016. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae 31:257-266. https://doi.org/10.4490/algae.2016.31.8.18
  18. Kim, H. S. 2002. Population dynamics and environmental conditions for the continuous growth of the phototrophic ciliate, Mesodinium rubrum in Korean West Coast. Ph.D. thesis, Graduate School, Kunsan National University, Gunsan, Korea, 126 pp. (in Korean with English abstract)
  19. Kim, J. I., Moore, C. E., Archibald, J. M., Bhattacharya, D., Yi, G., Yoon, H. S. & Shin, W. 2017. Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol. Evol. 9:1859-1872. https://doi.org/10.1093/gbe/evx123
  20. Kim, J. I., Yoon, H. S., Yi, G., Kim, H. S., Yih, W. & Shin, W. 2015. The plastid genome of the cryptomonad Teleaulax amphioxeia. PLoS One 10:e0129284. https://doi.org/10.1371/journal.pone.0129284
  21. Kuthanova Trskova, E., Bína, D., Santabarbara, S., Sobotka, R., Kana, R. & Belgio, E. 2019. Isolation and characterization of CAC antenna proteins and Photosystem I supercomplex from the cryptophytic alga Rhodomonas salina. Physiol. Plant. 166:309-319. https://doi.org/10.1111/ppl.12928
  22. Lim, A. S., Jeong, H. J., Kim, S. J. & Ok, J. H. 2018. Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture. Algae 33:279-290. https://doi.org/10.4490/algae.2018.33.9.10
  23. Lundholm, N., Moestrup, O., Kotaki, Y., Hoef-Emden, K., Scholin, C. & Miller, P. 2006. Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic analyses. J. Phycol. 42:464-481. https://doi.org/10.1111/j.1529-8817.2006.00211.x
  24. Marin, A., Doust, A. B., Scholes, G. D., Wilk, K. E., Curmi, P. M. G., van Stokkum, I. H. M. & van Grondelle, R. 2011. Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. Biophys. J. 101:1004-1013. https://doi.org/10.1016/j.bpj.2011.07.012
  25. Myung, G. 2009. Ecophysiology and plastid sequestration of Myrionecta rubra a marine mixotrophic ciliate causing red tides. Ph.D. thesis, Graduate School, Kunsan National University, Gunsan, Korea, 167 pp.
  26. Nagasaki, K., Kim, J. -J., Tomaru, Y., Takao, Y. & Nagai, S. 2009. Isolation and characterization of a novel virus infecting Teleaulax amphioxeia (Cryptophyceae). Plankton Benthos Res. 4:122-124. https://doi.org/10.3800/pbr.4.122
  27. Park, M. G., Kim, S., Kim, H. S., Myung, G., Kang, Y. G. & Yih, W. 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45:101-106. https://doi.org/10.3354/ame045101
  28. Pastoureaud, A., Dupuy, C., Chrétiennot-Dinet, M. J., Lantoine, F. & Loret, P. 2003. Red coloration of oysters along the French Atlantic coast during the 1998 winter season: implication of nanoplanktonic cryptophytes. Aquaculture 228:225-235. https://doi.org/10.1016/S0044-8486(03)00266-7
  29. Peltomaa, E., Johnson, M. D. & Taipale, S. J. 2018. Marine cryptophytes are great sources of EPA and DHA. Mar. Drugs 16:3. https://doi.org/10.3390/md16010003
  30. Peltomaa, E. T., Aalto, S. L., Vuorio, K. M. & Taipale, S. J. 2017. The importance of phytoplankton biomolecule availability for secondary production. Front. Ecol. Evol. 5:128. https://doi.org/10.3389/fevo.2017.00128
  31. Renaud, S. M., Thinh, L. -V., Lambrinidis, G. & Parry, D. L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195-214. https://doi.org/10.1016/S0044-8486(01)00875-4
  32. Renaud, S. M., Thinh, L. -V. & Parry, D. L. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147-159. https://doi.org/10.1016/S0044-8486(98)00399-8
  33. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  34. Scholes, G. D. & Rumbles, G. 2006. Excitons in nanoscale systems. Nat. Mater. 5:683-696. https://doi.org/10.1038/nmat1710
  35. Seixas, P., Coutinho, P., Ferreira, M. & Otero, A. 2009. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J. Exp. Mar. Biol. Ecol. 381:1-9. https://doi.org/10.1016/j.jembe.2009.09.007
  36. Seoane, S., Laza, A., Urrutxurtu, I. & Orive, E. 2005. Phytoplankton assemblages and their dominant pigments in the Nervion River estuary. Hydrobiologia 549:1-13. https://doi.org/10.1007/s10750-005-1736-6
  37. Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W. & Gillevet, P. M. 1994. The genetic data environment and expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10:671-675.
  38. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  39. Stein, J. R. 1973. Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, 448 pp.
  40. Stoecker, D. K., Johnson, M. D., de Vargas, C. & Not, F. 2009. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57:279-310. https://doi.org/10.3354/ame01340
  41. Stoecker, D. K., Michaels, A. E. & Davis, L. H. 1987. Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326:790-792. https://doi.org/10.1038/326790a0
  42. Taipale, S. J., Vuorio, K., Strandberg, U., Kahilainen, K. K., Järvinen, M., Hiltunen, M., Peltomaa, E. & Kankaala, P. 2016. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Environ. Int. 96:156-166. https://doi.org/10.1016/j.envint.2016.08.018
  43. Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128:219-240. https://doi.org/10.1016/0022-0981(89)90029-4
  44. Weisse, T. 2002. The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie van Leeuwenhoek 81:327-341. https://doi.org/10.1023/A:1020547517255
  45. Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. 2004. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 36:165-170. https://doi.org/10.3354/ame036165
  46. Yoo, Y. D., Seong, K. A., Jeong, H. J., Yih, W., Rho, J.-R., Nam, S. W. & Kim, H. S. 2017. Mixotrophy in the marine redtide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68:105-117. https://doi.org/10.1016/j.hal.2017.07.012
  47. Yoon, E. Y., Park, J., Jeong, H. J. & Rho, J. -R. 2017. Fatty acid composition and docosahexaenoic acid (DHA) content of the heterotrophic dinoflagellate Oxyrrhis marina fed on dried yeast: compared with algal prey. Algae 32:67-74. https://doi.org/10.4490/algae.2017.32.3.5
  48. Zhang, J., Ianora, A., Wu, C., Pellegrini, D., Esposito, F. & Buttino, I. 2014. How to increase productivity of the copepod Acartia tonsa (Dana): effects of population density and food concentration. Aquac. Res. 46:2982-2990. https://doi.org/10.1111/are.12456

Cited by

  1. Voltammetric, spectroscopic, and cellular characterization of redox functionality of eckol and phlorofucofuroeckol‐A: A comparative study vol.43, pp.7, 2019, https://doi.org/10.1111/jfbc.12845
  2. Combined Effects of Temperature, Irradiance, and pH on Teleaulax amphioxeia (Cryptophyceae) Physiology and Feeding Ratio For Its Predator Mesodinium rubrum (Ciliophora)1 vol.56, pp.3, 2019, https://doi.org/10.1111/jpy.12977
  3. Amino acids and fatty acids composition in mass‐cultured TELEAULAX AMPHIOXEIA strains with notable potential for rotifer ( BRACHIONUS PLICATILIS ) enrichment vol.51, pp.3, 2020, https://doi.org/10.1111/jwas.12698
  4. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production vol.35, pp.3, 2019, https://doi.org/10.4490/algae.2020.35.9.2
  5. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications vol.11, 2019, https://doi.org/10.3389/fphar.2020.618836