DOI QR코드

DOI QR Code

Trait-based algal community assembly associated with Pectinatella magnifica (Bryozoa, Phylactolaemata)

  • Kim, Hyo Gyeom (Department of Biological Sciences, Pusan National University) ;
  • Lee, Hak Young (Department of Biological Sciences, Chonnam National University) ;
  • Joo, Gea-Jae (Department of Biological Sciences, Pusan National University)
  • Received : 2018.12.14
  • Accepted : 2019.05.03
  • Published : 2019.06.15

Abstract

Habitat-forming species increase spatial complexity and alter local environmental conditions, often facilitating the assembly of plants and animals. We conducted a trait-based approach to algal assemblages associated with the freshwater bryozoan, Pectinatella magnifica. Association with algae leads to the inner bodies of the bryozoans being colored green; this is frequently observed in the large rivers of South Korea. We collected the green-colored gelatinous matrices and phytoplankton from waterbodies of the two main rivers in South Korea. Algal assemblages within the colonies and in the waterbodies were compared using the three diversity indices (richness, diversity, and dominance), and the composition of functional groups (FGs) and morphologically based functional groups (MBFGs) between the colonies within and outside of P. magnifica colonies. The most dominant and common species within the colonies were Oscillatoria kawamurae and Pseudanabaena catenata, both of which were assigned to the same FG (codon S1). Of the algal assemblages within the colonies, the dominance was higher, while the richness and diversity were lower, than those in the waterbodies. There was variation in the compositions of FGs and MBFGs in the waterbodies outside the colonies. Total nitrogen and orthophosphate led to dominance, and were significant factors for the variation in FGs in the waterbodies, whereas there were no such significant factors within the colonies. This trait-based approach to the community structure of associated algae provides the status and habitat gradient of these communities, which are stable, isolated, and consistent with the overgrowth of shade-adapted tychoplanktonic cyanobacteria.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. Akiyama, M. 1977. Illustrations of the Japanese fresh-water algae. Uchidarokakuho Publishing Company, Tokyo, 933 pp.
  2. Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. 1999. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80:2711-2726. https://doi.org/10.1890/0012-9658(1999)080[2711:TTRCOP]2.0.CO;2
  3. Bushnell, J. H. & Rao, K. S. 1979. Freshwater Bryozoa: microarchitecture of statoblasts and some aufwuchs animal associations. In Larwood, G. P. & Abbott, M. B. (Eds.) Advances in Bryozoology. Academic Press, London, 639 pp.
  4. Canning, E. U., Tops, S., Curry, A., Wood, T. S. & Okamura, B. 2002. Ecology, development and pathogenicity of Buddenbrockia plumatellae Schroder, 1910 (Myxozoa, Malacosporea) (Csyn. Tetracapsula bryozoides) and establishment of Tetracapsuloides n. gen. for Tetracapsula bryosalmonae. J. Eukaryot. Microbiol. 49:280-295. https://doi.org/10.1111/j.1550-7408.2002.tb00371.x
  5. Gadgil, S. & Gadgil, M. 1975. Can a single resource support many consumer species? J. Genet. 62:33-47. https://doi.org/10.1007/BF02984179
  6. Hakenkamp, C. C., Ribblett, S. G., Palmer, M. A., Swan, C. M., Reid, J. W. & Goodison, M. R. 2001. The impact of an introduced bivalve (Corbicula fluminea) on the benthos of a sandy stream. Freshw. Biol. 46:491-501. https://doi.org/10.1046/j.1365-2427.2001.00700.x
  7. Hillebrand, H., Durselen, C. -D., Kirschtel, D., Pollingher, U. & Zohary, T. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
  8. Ichise, S., Wakabayashi, T., Mizushima, K., Fujiwara, N. & Nomura, K. 1999. Aspect of the occurrence of water-bloom in Lake Biwa: growth of Oscillatoria kawamurae in 1998. Rep. Shiga Pref. Inst. Publ. Health Environ. Sci. 34:84-90.
  9. Jo, H., Joo, G. -J., Byeon, M., Hong, D. -G., Gim, J. -S., Kim, J. -Y. & Choi, J. -Y. 2014. Distribution pattern of Pectinatella magnifica (Leidy, 1851), an invasive species, in the Geum River and the Nakdong River, South Korea. J. Ecol. Environ. 37:217-223. https://doi.org/10.5141/ecoenv.2014.026
  10. Joo, G. -J., Ward, A. K. & Ward, G. M. 1992. Ecology of Pectinatella magnifica (Bryozoa) in an Alabama oxbow lake: colony growth and association with algae. J. N. Am. Benthol. Soc. 11:324-333. https://doi.org/10.2307/1467652
  11. Kruk, C., Huszar, V. L. M., Peeters, E. T. H. M., Bonilla, S., Costa, L., Lurling, M., Reynolds, C. S. & Scheffer, M. 2010. A morphological classification capturing functional variation in phytoplankton. Freshw. Biol. 55:614-627. https://doi.org/10.1111/j.1365-2427.2009.02298.x
  12. Kruk, C., Peeters, E. T. H. M., Van Nes, E. H., Huszar, V. L. M., Costa, L. S. & Scheffer, M. 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol. Oceanogr. 56:110-118. https://doi.org/10.4319/lo.2011.56.1.0110
  13. Kruk, C. & Segura, A. M. 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698:191-202. https://doi.org/10.1007/s10750-012-1072-6
  14. Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12:474-478. https://doi.org/10.1016/S0169-5347(97)01219-6
  15. LeGresley, M. & McDermott, G. 2010. Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Karlson, B., Cusack, K. & Bresnan, E. (Eds.) Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. IOC Manuals and Guides. UNESCO, Paris, pp. 25-30.
  16. Lilley, S. A. & Schiel, D. R. 2006. Community effects following the deletion of a habitat-forming alga from rocky marine shores. Oecologia 148:672-681. https://doi.org/10.1007/s00442-006-0411-6
  17. Litchman, E., de Tezanos Pinto, P., Klausmeier, C. A., Thomas, M. K. & Yoshiyama, K. 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653:15-28. https://doi.org/10.1007/s10750-010-0341-5
  18. Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, NJ, 179 pp.
  19. May, R. M. & Mac Arthur, R. H. 1972. Niche overlap as a function of environmental variability. Proc. Natl. Acad. Sci. U. S. A. 69:1109-1113. https://doi.org/10.1073/pnas.69.5.1109
  20. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21:178-185. https://doi.org/10.1016/j.tree.2006.02.002
  21. Mishra, S. K., Shrivastav, A., Maurya, R. R., Patidar, S. K., Haldar, S. & Mishra, S. 2012. Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Protein Expr. Purif. 81:5-10. https://doi.org/10.1016/j.pep.2011.08.011
  22. Nixdorf, B., Mischke, U. & Rucker, J. 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes: an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111-121. https://doi.org/10.1023/B:HYDR.0000004274.65831.e5
  23. Padisak, J., Crossetti, L. O. & Naselli-Flores, L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1-19. https://doi.org/10.1007/s10750-008-9645-0
  24. Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24:417-428. https://doi.org/10.1093/plankt/24.5.417
  25. Rojo, C. & Alvarez-Cobelas, M. 2003. Are there steady-state phytoplankton assemblages in the field? Hydrobiologia 502:3-12. https://doi.org/10.1023/B:HYDR.0000004266.79941.cc
  26. Ruhi, A., Herrmann, J., Gascon, S., Sala, J., Geijer, J. & Boix, D. 2011. Change in biological traits and community structure of macroinvertebrates through primary succession in a man-made Swedish wetland. Freshw. Sci. 31:22-37. https://doi.org/10.1899/11-018.1
  27. Salmaso, N., Naselli-Flores, L. & Padisak, J. 2015. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60:603-619. https://doi.org/10.1111/fwb.12520
  28. Seo, J. E. 1998. Taxonomy of the freshwater bryozoans from Korea. Korean J. Syst. Zool. 14:371-381.
  29. Setlikova, I., Skacelova, O., Sinko, J., Rajchard, J. & Balounova, Z. 2013. Ecology of Pectinatella magnifica and associated algae and cyanobacteria. Biologia 68:1136-1141. https://doi.org/10.2478/s11756-013-0262-7
  30. Stal, L. J. 2012. Cyanobacterial mats and stromatolites. In Whitton, B. A. (Ed.) Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer, Berlin, pp. 65-125.
  31. Stimson, J. 1985. The effect of shading by the table coral Acropora hyacinthus on understory corals. Ecology 66:40-53. https://doi.org/10.2307/1941305
  32. Vollenweider, R. A. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. dott. Marco de Marchi 33:53-83.
  33. Wood, A. C. L., Probert, P. K., Rowden, A. A. & Smith, A. M. 2012. Complex habitat generated by marine bryozoans: a review of its distribution, structure, diversity, threats and conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 22:547-563. https://doi.org/10.1002/aqc.2236
  34. Xu, F. -L., Jorgensen, S. E. & Tao, S. 1999. Ecological indicators for assessing freshwater ecosystem health. Ecol. Modell. 116:77-106. https://doi.org/10.1016/S0304-3800(98)00160-4
  35. Xu, F. -L., Tao, S., Dawson, R. W., Li, P. -G. & Cao, J. 2001. Lake ecosystem health assessment: indicators and methods. Water Res. 35:3157-3167. https://doi.org/10.1016/S0043-1354(01)00040-9
  36. Yamagishi, T. & Akiyama, M. 1984. Photomicrographs of the fresh-water algae. Uchida Rokakuho, Tokyo, 100 pp.
  37. Yu, G., Zhu, M., Chen, Y., Pan, Q., Chai, W. & Li, R. 2015. Polyphasic characterization of four species of Pseudanabaena (Oscillatoriales, Cyanobacteria) from China and insights into polyphyletic divergence within the Pseudanabaena genus. Phytotaxa 192:1-12. https://doi.org/10.11646/phytotaxa.192.1.1
  38. Zar, J. H. 1999. Biostatistical analysis. 4th ed. Pearson Education, New Delhi, 663 pp.

Cited by

  1. Drivers shaping episodic and gradual changes in phytoplankton community succession: Taxonomic versus functional groups vol.734, 2019, https://doi.org/10.1016/j.scitotenv.2020.138940