DOI QR코드

DOI QR Code

A Novel Non-Isolated Buck Boost Converter with High Voltage Gain and High Efficiency Characteristics

고변압비와 고효율 특성을 가진 새로운 비절연형 벅부스트 컨버터

  • Tran, Manh Tuan (Dept of Electrical Engineering, Soongsil University) ;
  • Amin, Saghir (Dept of Electrical Engineering, Soongsil University) ;
  • Choi, Woojin (Dept of Electrical Engineering, Soongsil University)
  • Received : 2019.03.11
  • Accepted : 2019.04.28
  • Published : 2019.10.20

Abstract

The use of high-voltage gain converters is essential for distributed power generation systems with renewable energy sources, such as fuel and solar cells, due to their low-voltage characteristics. In this study, a novel high-voltage gain non-isolated buck boost converter topology is proposed to cope with the need of a high-voltage conversion ratio without the transformer for the renewable energy sources. Given that the proposed topology utilizes the cascode structure, the voltage gain and the efficiency are higher than those of other conventional non-isolated converters. To demonstrate the feasibility of the proposed topology, the operation principle is presented, and the steady-state characteristics are analyzed in detail. The validity of the proposed converter is verified by experiments with a 400 W prototype converter.

Keywords

Acknowledgement

Supported by : Chungnam Center for Creative Economy and Innovation(CCCEI)

References

  1. W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1239-1250, Apr. 2011. https://doi.org/10.1109/TIE.2010.2049715
  2. M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-up DC-DC converters: A comprehensive review of voltage -boosting techniques, topologies, and applications," in IEEE Transactions on Power Electronics, Vol. 32, No. 12, pp. 9143-9178, Dec. 2017. https://doi.org/10.1109/TPEL.2017.2652318
  3. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated DC-DC converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  4. Y. Hsieh, J. Chen, T. Liang, and L. Yang, “Novel high step-up DC-DC converter for distributed generation system,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1473-1482, Apr. 2013. https://doi.org/10.1109/TIE.2011.2107721
  5. T. Wu, Y. Lai, J. Hung, and Y. Chen, “Boost converter with coupled inductors and buck-boost type of active clamp,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 154-162, Jan. 2008. https://doi.org/10.1109/TIE.2007.903925
  6. R. Wai and C. Lin, “High-efficiency, high-step-up DC-DC converter for fuel-cell generation system,” IEEE Proc. Elect. Power Appl., Vol. 152, No. 5, pp. 1371-1378, Sep. 2005. https://doi.org/10.1049/ip-epa:20045278
  7. Y. P. Hsieh, J. F. Chen, L. S. Yang, C. Y. Wu, and W. S. Liu, “High conversion-ratio bidirectional DC/DC converter with couple inductor,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1311-1319, Mar. 2014. https://doi.org/10.1109/TIE.2013.2261036
  8. S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A boost converter with capacitor multiplier and coupled inductor for ac module applications,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1503-1511, Apr. 2013. https://doi.org/10.1109/TIE.2011.2169642
  9. E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, and A. A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 4, pp. 1159-1171, May 2008. https://doi.org/10.1109/TCSI.2008.916427
  10. G. Wu, X. Ruan, and Z. Ye, "Nonisolated high step-up DC-DC converters adopting switched- capacitor cell," in IEEE Transactions on Industrial Electronics, Vol. 62, No. 1, pp. 383-393, Jan. 2015. https://doi.org/10.1109/TIE.2014.2327000
  11. V. T. Tran, M. K. Nguyen, Y. O. Choi, and G. B. Cho, "Switched-capacitor-based high boost DC- DC converter," Energies, Vol. 11, No. 4, 2018.
  12. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated DC-DC converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  13. B. Axelrod, G. Golan, Y. Berkovich, and A. Shenkman, “Diode-capacitor voltage multipliers combined with boost-converters: Topologies and characteristics,” IET Power Electron., Vol. 5, No. 6, pp. 873-884, Jul. 2012. https://doi.org/10.1049/iet-pel.2011.0215
  14. Y. J. A. Alcazar, D. S. Oliveira Jr., F. L. Tofoli, and R. P. Torrico-Bascope, “DC-DC nonisolated boost converter based on the three-state switching cell and voltage multiplier cells,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4438-4449, Oct. 2013. https://doi.org/10.1109/TIE.2012.2213555
  15. B. Wu, S. Li, Y. Liu, and K. M. Smedley, "A new hybrid boosting converter for renewable energy applications," in IEEE Transactions on Power Electronics, Vol. 31, No. 2, pp. 1203-1215, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2420994
  16. X. Hu and C. Gong, “A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 789-800, Feb. 2014. https://doi.org/10.1109/TPEL.2013.2257870
  17. W. Liu, J. Chen, T. Liang, R. Lin, and C. Liu, "Analysis, design, and control of bidirectional cascoded configuration for a fuel cell hybrid power system," in IEEE Transactions on Power Electronics, Vol. 25, No. 6, pp. 1565-1575, Jun. 2010. https://doi.org/10.1109/TPEL.2009.2037003