DOI QR코드

DOI QR Code

Characteristics of Benthic Macroinvertebrates in Gihwa Stream, Tributary of Dong River, Korea

동강 지류 기화천의 저서성 대형무척추동물 군집특성

  • 전형주 (국립수산과학원 중앙내수면연구소) ;
  • 홍철 (국립환경과학원) ;
  • 송미영 (국립수산과학원 중앙내수면연구소) ;
  • 김경환 (국립수산과학원 중앙내수면연구소) ;
  • 이완옥 (전남대학교 해양기술학부) ;
  • 곽인실 (전남대학교 해양기술학부)
  • Received : 2019.04.04
  • Accepted : 2019.05.30
  • Published : 2019.06.30

Abstract

In order to investigate the characteristics of benthic macroinvertebrate communities in the Gihwa stream, a tributary of the Dong River, we surveyed the community and environmental factors in April and November 2013 at 6 sites. The benthic macroinvertebrate taxa represented total 63 species belonging to 29 families, 12 orders, 5 classes and 4 phyla. Total 48 (10~28 in each site) species were collected in April and 44 (13~24 in each site) in November. The number of individuals increased slightly from $560{\sim}2,290m^{-2}$ in April to $806{\sim}3,674m^{-2}$ in November. Chironomidae spp. was dominant species in April and Stenopsyche bergeri was dominant species in November. In the Functional Feeding Groups, Gathering-collector(53.9%) was dominant in April, while Filtering-collector (44.3%) increased in November. Intolerant order category (i.e. EPT species richness) in St.1, St.5 and St.6 increased in November compared to April due to the increase of Trichoptera. St.2, St.3 and St.4, which were located near the fish farm, were low EPT as a whole, but Benthic macroinvertebrate index (BMI) was good state in November than April due to decrease of Chironomidae spp.. The environmental factors in the survey site showed similar tendency except for St.1 between both seasons, and electrical conductivity, salinity, and water width showed seasonal differences. Cluster analysis and Nonmetric multidimensional scaling (NMDS) based on benthic macroinvertebrate community data were divided into two groups according to season. Electrical conductivity, salinity and substrate composition were the most influential factors determining the distribution patterns of macroinvertebrate communities.

동강 지류인 기화천의 저서성 대형무척추동물 군집 특성을 알아보기 위해 6지점을 대상으로 2013년 4월과 11월 조사를 실시하였다. 조사기간 동안 출현한 저서성 대형무척추동물은 총 4문 5강 12목 29과 63종이었다. 출현 종수는 4월 조사에서 총 48종으로 지점별로 11~28종, 11월 조사에서 총 44종으로 지점별로 13~24종이 출현하였다. 계절별 출현 개체수는 4월 조사에서 $560{\sim}2,290inds.\;m^{-2}$, 11월 조사에서 $806{\sim}3,674inds.\;m^{-2}$로 다소 증가하였다. 종조성을 살펴보면 우점종으로는 깔따구류가 4월 조사에서 가장 많이 출현하였으며, 11월 조사에서 연날개수염치레각날도래가 가장 우점하였다. 섭식기능군은 4월의 경우 전체 지점에서 GC가 우세하였으나, 11월은 FC가 증가하는 경향을 나타냈다. 날도래목의 증가로 St.1, St.5, St.6의 EPT는 4월보다 11월에 증가하였으며, 양식장 주변에 위치한 St.2, St.3, St.4는 전체적으로 EPT가 낮게 나왔으나, 깔따구류의 감소로 BMI는 4월보다 11월에 더 좋아지는 것으로 나타났다. 조사지점의 환경요인은 St.1을 제외하고 비슷한 경향을 나타냈으며, 전기전도도, 염분농도, 수폭은 계절적 차이를 보였다. 환경요인과 저서성 대형무척추동물 군집을 다변량분석으로 살펴본 결과 조사시기에 따라 두 그룹으로 나누어졌으며, 이들 그룹은 전기전도도, 염도, 하상구성 특성과 밀접한 관계를 가지고 있었다.

Keywords

Acknowledgement

Supported by : 국립수산과학원, 한국연구재단

References

  1. Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. The American Midland Naturalist 67: 477-504. https://doi.org/10.2307/2422722
  2. Driscoll, C.T., K.M. Driscoll, H. Fakhraei and K. Civerolo. 2016. Long-term temporal trends and spatial patterns in the acidbase chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmospheric Environment 146: 5-14. https://doi.org/10.1016/j.atmosenv.2016.08.034
  3. George, S.D., B.P. Baldigo, G.B. Lawrence and R.L. Fuller. 2018. Effects of watershed and in-stream liming on macroinvertebrate communities in acidified tributaries to an Adirondack lake. Ecological Indicators 85: 1058-1067. https://doi.org/10.1016/j.ecolind.2017.11.048
  4. Goldyn, R., B. Szpakowska, D. Swierk, P. Domek, J. Buxakowski, R. Dondajewska, D. Baralkiewicz and A. Sajnog. 2018. Influence of stormwater runoff on macroinvertebrates in a small urban river and a reservoir. Science of The Total Environment 625: 743-751. https://doi.org/10.1016/j.scitotenv.2017.12.324
  5. Gonzalo, C. and J.A. Camargo. 2013. The impact of an industrial effluent on the water quality, submersed macrophytes and benthic macroinvertebrates in a dammed river of Central Spain. Chemosphere 93: 1117-1124. https://doi.org/10.1016/j.chemosphere.2013.06.032
  6. Graeber, D., T.M. Jensen, J.J. Rasmussen, T. Riis, P. Wiberg- Larsen and A. Baattrup-Pedersen. 2017. Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type. Science of The Total Environment 599: 1517-1523. https://doi.org/10.1016/j.scitotenv.2017.05.102
  7. Guilpart, A., J.M. Roussel, J. Aubin, T. Caquet, M. Marle and H. Le Bris. 2012. The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecological Indicators 23: 356-365. https://doi.org/10.1016/j.ecolind.2012.04.019
  8. Hong, C., W.S. Kim and I.S. Kwak. 2017. Changes of benthic macroinvertebrate community composition following natural temperature and precipitation increase. Korean Journal of Ecology and Environment 50: 275-285. https://doi.org/10.11614/KSL.2017.50.3.275
  9. Hynes, H.B.N. 1960. The Biology of Polluted Waters. Liverpool University Press, Liverpool.
  10. Kelly, D.W. and J.T. Dick. 2005. Effects of environment and an introduced invertebrate species on the structure of benthic macroinvertebrate species at the catchment level. Archiv fur Hydrobiologie 164: 69-88. https://doi.org/10.1127/0003-9136/2005/0164-0069
  11. Kim, D.H., W.S. Cho and T.S. Chon. 2013. Self-organizing map and species abundance distribution of stream benthic macroinvertebrates in revealing community patterns in different seasons. Ecological Informatics 17: 14-29. https://doi.org/10.1016/j.ecoinf.2013.06.006
  12. Kwak, I.S., M.Y. Song and T.S. Chon. 2004. The effects of natural disturbances on benthic macro-invertebrate. Korean Journal of Limnology 37: 87-95.
  13. Lenat, D.R. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society 7: 222-233. https://doi.org/10.2307/1467422
  14. Margalef, R. 1958. Information theory in ecology. General Systems 3: 36-71.
  15. McNaughton, S.J. 1967. Relationship among functional properties of California Grassland. Nature 216: 168-169. https://doi.org/10.1038/216168b0
  16. Merritt, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America 3rd ed. Kendall/Hunt Publishing Company, Dobuque, Iowa.
  17. Min, D.G., J.S. Lee, D.B. Go and J.G. Jae. 2004. Mollusks in Korea. Freshwater Shellfish Museum, Korea.
  18. Park, J.-W., M.-K. Hwang, S.-J. Aw, S.-S. Choi and P.-R. Chung. 2001. Biological evaluation of water quality and community structure of benthic macroinvertebrates in the Pyungchang River water system, Gangwon-do, Korea. Korean Journal of Environmental Biology 19: 119-128.
  19. Park, Y.J., K.D. Kim, Y.H. Cho, Y.G. Han, Y.J. Kim and S.H. Nam. 2011. Habitat classification and distribution characteristic of aquatic insect functional feeding groups in the Geum River, Korea. Korean Journal of Environment and Ecology 25: 691-709.
  20. Pielou, E.C. 1975. Ecological Diversity. Wiley, New York.
  21. Piggott, J.J., C.R. Townsend and C.D. Matthaei. 2015. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Global Change Biology 21: 1887-1906. https://doi.org/10.1111/gcb.12861
  22. Piscart, C., R. Genoel, S. Doledec, E. Chauvet and P. Marmonier. 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environmental Pollution 157: 1011-1018. https://doi.org/10.1016/j.envpol.2008.10.010
  23. Resh, V.H., A.V. Brown, A.P. Covich, M.E. Gurtz, H.W. Li, G.W. Minshall, S.R. Reice, A.L. Sheldon, J.B. Wallace and R.C. Wissmar. 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433-455. https://doi.org/10.2307/1467300
  24. Ro, T.H. and D.J. Chun. 2004. Functional feeding group categorization of Korean immature aquatic insects and community stability analysis. Korean Journal of Limnology 37: 137-148.
  25. Rosenberg, D.M. and V.H. Resh. 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York.
  26. Shearer, K.A., J.W. Hayes, I.G. Jowett and D.A. Olsen. 2015. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. New Zealand Journal of Marine and Freshwater Research 49: 178-191. https://doi.org/10.1080/00288330.2014.988632
  27. Shi, X., J. Liu, X. You, K. Bao, B. Meng and B. Chen. 2016. Evaluation of river habitat integrity based on benthic macroinvertebrate- based multi-metric model. Ecological Modelling 353: 67-76.
  28. Wallace, J.B., S.L. Eggert, J.L. Meyer and J.R. Webster. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102-104. https://doi.org/10.1126/science.277.5322.102
  29. Won, D.H., S.J. Kwaon and Y.C. Jun. 2008. Aquatic Insects of Korea. Korea Ecosystem Service, Seoul.
  30. Yoon, I.B. 1988. Korean Animals and Plants Illustrations Vol. 30 - Animal species (Benthic macroinvertebrates). Ministry of Education, Korea.
  31. Yoon, I.B. 1995. Aquatic Insects of Korea. Junghaengsa, Seoul.