DOI QR코드

DOI QR Code

Application of Beta Diversity to Analysis the Fish Community Structure in Stream

베타다양성 개념의 적용을 통한 청계천 어류 군집 특성 분석

  • Received : 2019.07.23
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

Beta diversity is an efficient means of assessing the spatial variation in community composition among sites. To present fish community variation and LCBD (Local Contribution to Beta Diversity) among sites in stream, 6 sampling sites were selected in Cheonggye stream. Fish communities, environmental and habitat variables were collected at sites from April 2014 to October 2015. We used the total variance of the fish community data table (site-by-species community table) based on different forms, presence-absence, abundance, and Hellinger transformation, to estimate and compare beta diversity and LCBD. Fish community data table transformed by Hellinger distance showed the higher values of beta diversity than presence-absence and abundance data table. A similar patterns of LCBD were observed with presence-absence and Hellinger transformed data table. Low value of beta diversity calculated by community data table with abundance was due to the non-normality of fish assemblage data. Additionally, correlation coefficients were calculated to evaluate the relationships among LCBD, community indices and physicochemical variables. LCBD showed negative correlation coefficients with Shannon diversity. Overall, application of beta diversity analysis is an efficient method of addressing spatial variation of fish communities and ecological uniqueness of the sites in stream.

청계천에 서식하는 어류 군집의 공간적 변이와 환경과의 관계를 측정하기 위해, 청계천 내 6개 지점을 대상으로 2년간(2014~2015년) 이화학적 요인, 서식처 환경, 어류 군집을 조사하였다. 어류 군집의 공간적 변이는 지점-종 군집 데이터 메트릭스를 기반으로 한 베타다양성 분석을 통해 정량적으로 제시하였다. 또한 청계천 내 전체 군집 변이 값(베타다양성)과 함께 각각의 지점이 청계천 전체 베타다양도에 기여하는 값 (LCBD, Local Contribution to Beta Diversity)도 계산하였다. 데이터 분석의 기반이 되는 지점-종 군집 데이터 테이블은 출현-비출현, 풍부도, 헤링거 변환 값의 세 가지 형태로 적용하였고, 해당 데이터 형태에 따른 베타다양성과 지점별 변이 영향을 각각 계산하여 비교하였다. 헤링거 변환을 통해 계산된 베타다양성 값은 출현-비출현 정보나 풍부도를 바탕으로 한 분석보다 큰 값을 보여주어 공간적 변이를 가장 잘 보여주는 것으로 나타났다. 각 지점별 군집 변이 기여도(LCBD)는 출현-비출현 정보와 해링거 변환을 통한 분석이 유사한 경향을 보여주었다. 자료의 정규성을 가지기 어려운 어류 군집 자료의 경우 풍부도를 이용한 공간 변이 분석은 적절하지 않은 것으로 판단된다. 추가적으로 다양한 환경 요인 및 군집 지수와 베타다양성 기여도 값의 관계를 상관분석을 통해 나타내었다. 해당 지점의 알파다양성 지수와 베타다양성 기여도가 높은 음의 상관관계를 보였고 이는 선행 연구와 유사한 결과이다. 본 연구에 적용한 방법은 매트릭스 형태의 자료를 대상으로 베타다양성 계산과 지점별 군집 변이 기여도를 수치화하는 데 유용한 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 국립수산과학원, 국립환경과학원, 국립생태원

References

  1. Anderson, M.J., K.E. Ellingsen and B.H. McArdle. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9(6): 683-693. https://doi.org/10.1111/j.1461-0248.2006.00926.x
  2. Anderson, M.J., T.O. Crist, J.M. Chase, M. Vellend, B.D. Inouye, A.L. Freestone and S.P. Harrison. 2011. Navigating the multiple meanings of $\beta$ diversity: a roadmap for the practicing ecologist. Ecology Letters 14(1): 19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x
  3. Choi, J.K., H.K. Byeon, Y.S. Kwon and Y.S. Park. 2008. Spatial and temporal changes of fish community in the Cheonggye stream after the rehabilitation Project. Korean Journal of Ecology and Environment 41: 374-381.
  4. Clarke, K.R., P.J. Somerfield and M.G. Chapman. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330(1): 55-80. https://doi.org/10.1016/j.jembe.2005.12.017
  5. Ellison, A.M. 2010. Partitioning diversity1. Ecology 91(7): 1962-1963. https://doi.org/10.1890/09-1692.1
  6. Graham, C.H. and P.V. Fine. 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters 11(12): 1265-1277. https://doi.org/10.1111/j.1461-0248.2008.01256.x
  7. Izsak, C. and A.R.G. Price. 2001. Measuring ${\beta}$-diversity using a taxonomic similarity index, and its relation to spatial scale. Marine Ecology Progress Series 215: 69-77. https://doi.org/10.3354/meps215069
  8. Kim, I.S. and J.Y. Park. 2002. Freshwater fishes of Korea. Kyohaksa Publishing Co. Ltd., Seoul: 1-467.
  9. Koleff, P., K.J. Gaston and J.J. Lennon. 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72(3): 367-382. https://doi.org/10.1046/j.1365-2656.2003.00710.x
  10. Lamy, T., P. Legendre, Y. Chancerelle, G. Siu and J. Claudet. 2015. Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: insights from beta-diversity decomposition. PLoS One 10(9): e0138696. https://doi.org/10.1371/journal.pone.0138696
  11. Legendre, P. 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23(11): 1324-1334. https://doi.org/10.1111/geb.12207
  12. Legendre, P. and M. De Caceres. 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16(8): 951-963. https://doi.org/10.1111/ele.12141
  13. Legendre, P., D. Borcard and P.R. Peres-Neto. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75(4): 435-450. https://doi.org/10.1890/05-0549
  14. Minshall, G.W. 1984. Aquatic insect-substratum relationships. In 'The Ecology of Aquatic Insects'. Praeger New York: 358-400.
  15. Nekola, J.C. and P.S. White. 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26(4): 867-878. https://doi.org/10.1046/j.1365-2699.1999.00305.x
  16. Nelson, J.S. 2006. Fishes of the world 4thed. JohnWiley and Sons, New York, U.S.A.: 1-624.
  17. Park, J.Y., S.H. Kim, M.H. Ko, M.K. Oh and J.C. Shin. 2009. Change of ichthyofauna and fish community on natural stream restoration in Jeonju-chon stream, Jeollabuk-do, Korea. Korean Journal of Environment and Ecology 23(5): 381-391.
  18. Pelissier, R., P. Couteron, S. Dray and D. Sabatier. 2003. Consistency between ordination techniques and diversity measurements: two strategies for species occurrence data. Ecology 84(1): 242-251. https://doi.org/10.1890/0012-9658(2003)084[0242:CBOTAD]2.0.CO;2
  19. Quinn, J.M. and C.W. Hickey. 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. New Zealand Journal of Marine and Freshwater Research 24(3): 387-409. https://doi.org/10.1080/00288330.1990.9516432
  20. Seoul, 2007. 2006 Environment white paper: Environment of Seoul. Seoul: 1-598.
  21. Swenson, N.G., P. Anglada-Cordero and J.A. Barone. 2010. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences 278(1707): 877-884.
  22. Vellend, M. 2001. Do commonly used indices of ${\beta}$-diversity measure species turnover? Journal of Vegetation Science 12(4): 545-552. https://doi.org/10.2307/3237006
  23. Verneaux, J. 1973. Cours d'eau de Franche-Comte (massif du Jura): recherches ecologiques sur le reseau hydrographique du Doubs: essai de biotypologie. Institut des Sciences Naturelles.
  24. Whittaker, R.H. 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs 30(3): 279-338. https://doi.org/10.2307/1943563
  25. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213-251. https://doi.org/10.2307/1218190
  26. Whittaker, R.J., K.J. Willis and R. Field. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28(4): 453-470. https://doi.org/10.1046/j.1365-2699.2001.00563.x